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Preface

This book is a much enlarged second edition of “Knowledge Spaces”, by Jean-
Paul Doignon and Jean-Claude Falmagne, which appeared in 1999. Chapters

content are explained below. As much of our earlier preface remains valid, we
reproduce the useful parts here.

The work reported in these pages began during the academic year 1982–
83. One of us (JCF) was on sabbatical leave at the University of Regensburg.
For various reasons, the time was ripe for a new joint research subject. Our
long term collaboration was thriving, and we could envisage an ambitious
commitment. We decided to build an efficient machine for the assessment of
knowledge—for example, that of students learning a scholarly subject. We be-
gan at once to work out the theoretical components of such a machine. Until
then, we had been engaged in topics dealing mostly with geometry, combi-
natorics, psychophysics, and especially measurement theory. The last subject
has some bearing on the content of this book. A close look at the foundations
of measurement, in the sense that this term has in the physical sciences, may
go a long way toward convincing you of its limited applicability. It seemed to
us that in many scientific areas, from chemistry to biology and especially the
behavioral sciences, theories must often be built on a very different footing
than that of classical physics. Evidently, the standard physical scales such as
time, mass, or length may always be used in measuring aspects of phenom-
ena. But the substrate proper to these other sciences may very well be of a
fundamentally different nature. In short, nineteenth century physics is a bad
example. This is not always understood. There was in fact a belief, shared
by many nineteenth century scientists, that for an academic endeavour to be
called a ‘science’, it had to resemble classical physics in critical ways. In par-
ticular, its basic observations had to be quantified in terms of measurement
scales in the exact sense of classical physics.

Prominent advocates of that view were Francis Galton, Karl Pearson and
William Thomson Kelvin. Because that position is still influential today, with
a detrimental effect on fields such as ‘psychological measurement’, which is
relevant to our subject, it is worth quoting some opinions in detail. In Pear-
son’s biography of Galton (Pearson, 1924, Vol. II, p. 345), we can find the
following definition:

“Anthropometry, or the art of measuring the physical and mental
faculties of human beings, enables a shorthand description of any in-
dividual by measuring a small sample of his dimensions and qualities.
These will sufficiently define his bodily proportions, his massiveness,

1 The content of the book is summarized in Section 1.5 on page 12.

extensively revised1. The reasons for the change of title and the extended
2, 10, 16, 17 and 18 are new, and several of the other chapters have been



VI Preface

strength, agility, keenness of sense, energy, health, intellectual capacity
and mental character, and will substitute concise and exact numeri-
cal2 values for verbose and disputable estimates3.”

For scientists of that era, it was hard to imagine a non-numerical approach
to precise study of an empirical phenomenon. Karl Pearson himself, for
instance—commenting on a piece critical of Galton’s methods by the editor
of the Spectator4—, wrote

“There might be difficulty in ranking Gladstone and Disraeli for “Can-
dour”, but few would question John Morley’s position relative to both
of them in this quality. It would require an intellect their equal to rank
truly in scholarship Henry Bradshaw, Robertson Smith and Lord Ac-
ton, but most judges would place all three above Sir John Seeley, as
they would place Seeley above Oscar Browning. After all, there are
such things as brackets, which only makes the statistical theory of
ranking slightly less simple in the handling” (Pearson, 1924, Vol. II,
p. 345).

In other words, measuring a psychical attribute such as ‘candour’ only requires
fudging a bit around the edges of the order relation of the real numbers,
making it either, in current terminology, a ‘weak order’ (cf. 1.6.7 in Chapter 1)
or perhaps a ‘semiorder’ (cf. Problems 9 and 10 in Chapter 4).

As for Kelvin, his position on the subject is well-known, and often sum-
marized in the form: “If you cannot measure it, then it is not science.” (In
French: “Il n’y a de science que du mesurable.”) The full quotation is:

“When you can measure what you are speaking about, and express
it in numbers, you know something about it; but when you cannot
measure it, when you cannot express it in numbers, your knowledge
is of a meager and unsatisfactory kind: it may be the beginning of
knowledge, but you are scarcely, in your thoughts, advanced to the
stage of science, whatever the matter may be” (Kelvin, 1889).

Such a position, which equates precision with the use of numbers, was not on
the whole beneficial to the development of mature sciences outside of physics.
It certainly had a costly impact on the assessment of mental traits. For in-
stance, for the sake of scientific precision, the assessment of mathematical

2 Our emphasis.
3 This excerpt is from an address on “Anthropometry at Schools” given in 1905 by

Galton at the London Congress of the Royal Institute for Preventive Medicine.
The text was published in the Journal of Preventive Medicine, Vol. XIV, pp. 93–
98, London, 1906.

4 The Spectator, May 23, 1874. The editor of the Spectator was taking Galton to
task for his method of ranking applied to psychical character. He used ‘candour’
and ‘power of repartee’ as examples.
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knowledge was superseded in the US by the measurement of mathematical
aptitude using instruments directly inspired from Galton via Alfred Binet in
France. They are still used today in such forms as the S.A.T.5, the G.R.E.
(Graduate Record Examination), and other similar tests.

In the mind of Galton and his followers, the numerical measurement of
mental traits was to be a prelude to the establishment of sound, predictive
scientific theories in the spirit of those used so successfully in classical physics.
The planned constructions, however, never went much beyond the measure-
ment stage6.

Of course, we are enjoying the benefits of hindsight. In all fairness, there
were important mitigating circumstances affecting those who uphold the cause
of numerical measurement as a prerequisite to science. For one thing, the
appropriate mathematical tools were not yet available for different concep-
tions. More importantly, the ‘Analytical Engine’ of Charles Babbage was still
a dream, and close to another century had to pass before the appearance
of computing machines capable of handling the symbolic manipulations that
would be required.

The material of this book represents a sharp departure from other ap-
proaches to the assessment of knowledge. Its mathematics is in the spirit of
current research in combinatorics. No attempt is made to obtain a numerical
representation7. We start from the concept of a possibly large but essentially
discrete set of ‘units of knowledge.’ In the case of elementary algebra, for
instance, one such unit might be a particular type of algebra problem. The
full set of questions may contain several hundred such problems. Two key
concepts are: the ‘knowledge state’, a subset of problems that some individ-
ual is capable of solving correctly, and the ‘knowledge structure’, which is a
distinguished collection of knowledge states. For beginning algebra, a useful
knowledge structure may contain several million feasible knowledge states.

An important difference between the psychometric approach and that ex-
pounded in this book concerns the choice of problems representing a particular
curriculum, such as beginning algebra. In our case, there is no essential re-
striction. The problems involved in any assessment can be chosen in a pool
covering the entire curriculum. By contrast, the problems selected in the con-
struction of a psychometric test must satisfy a criterion of homogeneity: they

5 Interestingly, the meaning of the acronym S.A.T. was changed a few years ago by
Educational Testing Service from ‘Scholastic Aptitude Test’ to ‘Scholastic Assess-
ment Test’, suggesting that a different philosophy on the part of the test makers
was considered. Today, it appears that ‘S.A.T.’ has become an abbreviation, a
mnemonic without any intended meaning.

6 Sophisticated mathematical theories can certainly be found in some areas of the
behavioral sciences, but they do not generally rely on ‘psychological measure-
ment.’

7 For example, in the form of one or more measurement scales quantifying some
‘aptitudes.’
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must contribute to the estimation of a numerical score. Any problem that does
not satisfy this criterion—for which there is a technical statistical definition—
may be rejected, even though it may be an essential part of the curriculum.

If a test is used as part of the assessment of students competence, with
potential consequences not only for the students but also for the teacher or
the school, the practice of teaching-to-the-test is unavoidable. In that respect,
the difference between the two approaches is critical. With assessments based
on the knowledge space methodology, teaching-to-the-test is beneficial8 be-
cause the questions of the tests are essential parts of the curriculum. When
psychometric tests are used, the practice may result in a distortion of the
educational process, as is often argued and criticized.

The title “Knowledge Spaces” given to the first edition was consonant
with our initial goal of building a machine for assessing knowledge. It later
turned out that the resulting instrument could form the core component of a
teaching engine, for the sensible reason that ascertaining the exact knowledge
state of a student in a scholarly subject is the essential step toward educating
the student in that subject. However, the change of focus from assessing to
teaching prompted the development of a particular kind of knowledge space,
called a ‘learning space’, hence the title of this new edition of our book.
The difference between the names is not merely skin-deep. It is motivated
by a re-axiomatization of the concept. Learning spaces are specified by two
simple, pedagogically inescapable axioms. They are presented and discussed
in Chapter 2. (Chapter 1 contains a general, non technical introduction to our
subject.)

The two concepts of knowledge state and knowledge structure give rise
to various lattice-theoretical developments motivated by the empirical appli-
cation intended for them. This material is presented in Chapters 2-8. The
concept of a learning space has been generalized in the form of an algebraic
system called a medium. The connections between media and learning spaces
are spelled out in Chapter 10.

The behavioral nature of the typical empirical observations—the responses
of human subjects to questions or problems—practically guarantees noisy
data. Also, it is reasonable to suppose that all the knowledge states (in our
sense) are not equally likely in a population of reference. This means that
a probabilistic theory had to be forged to deal with these two kinds of un-
certainties. This theory is expounded in Chapters 11 and 12. Chapters 9, 13
and 14 are devoted to various practical schemes for uncovering an individual’s
knowledge state by sophisticated questioning. Chapters 15 and 16 tackle the
complex problems of constructing knowledge spaces and learning spaces.

For a real-life demonstration of a system based on the concepts of this
book, we direct the reader to http://www.aleks.com where various full-

8 It is also relevant that, in standard applications of knowledge space theory, such as
the ALEKS system (see page 10), there are typically no multiple choice problems.
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scale programs involving both an assessment module and a learning module
are available, covering mathematics and science subjects (see page 10 for a
more detailed description). Chapter 17 is devoted to an investigation of the
ALEKS assessment software from the standpoint of its validity, that is, the ac-
curacy of its predictions. The final chapter 18 contains a list of open problems.

Many worthwhile developments could not be included here. There is much
on-going research, especially in two European centers: the University of Padua,
with Francesca Cristante, Luca Stefanutti and their colleagues, and the Uni-
versity of Graz by the research team of Dietrich Albert. However, we had
to limit our coverage. Further theoretical concepts and results can be found
in chapters of two edited volumes, by Albert (1994) and Albert and Lukas
(1998). The second one also contains some applications to various domains of
knowledge. Current references on knowledge spaces can be obtained at

http://wundt.kfunigraz.ac.at/hockemeyer/bibliography.html

thanks to Cord Hockemeyer, who maintains a searchable database.

Our enterprise, from the first idea to the completion of Knowledge Spaces,
the first edition of this monograph, took 17 years, during which Falmagne ben-
efited from major help in the form of several grants from the National Science
Foundation at New York University. JCF also ackowledges a grant from the
Army Research Institute (to New York University). He spent the academic
year 1987-88 at the Center for Advanced Study in the Behavioral Sciences in
Palo Alto. JPD, as a Fulbright grantee, was a visitor at the Center for several
months, and substantial progress on our topic was made during that period.
Another major grant from the National Science Foundation to JCF at the
University of California, Irvine, was instrumental for the development of the
educational software ALEKS (which belongs to UCI and is licenced to ALEKS
Corporation9). We thank all these institutions for their financial support.

Some special debts must be ackowledged separately. One is to Duncan
Luce, for his detailed remarks on a preliminary draft of the first edition, many
of which led us to alter some aspects of our text. Chris Doble’s carefully read
part of the present edition and his comments were also very useful to us.

9 JCF is the Chairman and a co-founder of ALEKS Corporation.

Numerous colleagues, students and former students were helpful at various
stages of our work. Their criticisms and suggestions certainly improved this
book. We thank especially Dietrich Albert, Biff Baker, Eric Cosyn, Charlie
Chubb, Chris Doble, Nicolas Gauvrit, Cord Hockemeyer, Yung-Fong Hsu, Ge-
offrey Iverson, Mathieu Koppen, Kamakshi Lakshminarayan, Wil Lampros,
Damien Lauly, Arnaud Lenoble, Josef Lukas, Jeff Matayoshi, Bernard Mon-
jardet, Cornelia Müller-Dowling, Louis Narens, Misha Pavel, Michel Regen-
wetter, Selim Rexhap, Ragnar Steingrimsson, Ching-Fan Seu, Nicolas Thiéry,
Vanessa Vanderstappen, Hassan Uzun and Fangyun Yang. We also bene-
fited from the remarks of students from two Erasmus courses given by JPD
(Leuven, 1989, and Graz, 1998).
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As mentioned at the beginning of this preface, JCF spent the all important
gestation period of 1982-83 at the University of Regensburg, in the stimulat-
ing atmosphere of Professor Jan Drösler’s team there. This stay was made
possible by a Senior US Scientist Award to Falmagne from the von Humboldt
Foundation. The role of Drösler and his colleagues and of the von Humboldt
Foundation is gratefully recognized here. During the initial software devel-
opment phase at University of California at Irvine, Steve Franklin’s friendly
criticisms and cooperation have been invaluable to JCF. During the prepara-
tion of the revised edition, JPD’s work was partially supported by an ARC
(Actions de Recherche Concertées ), fund of the Communauté française de
Belgique.

We are indebted to Wei Deng for her uncomprimising chase for the typo-
graphical errors and solecisms committed in an early draft of the first edition.
As the second edition largely relies on the first one, the present work also
gained from Wei’s pointed remarks. Because this is a human enterprise, the
reader will surely uncover some remaining incongruities, for which we ac-
cept all responsibilities. We have also benefited from the kind efficiency of

who much facilitated the production phase of this work.

Many of the figures in this new edition have been manufactured in tikz,
the LATEX-based graphic software created by Till Tantau. We thank him for
making this powerful instrument available.

Finally, but not lastly, we thank again our respective spouses, Dina and
Monique, for their kind and unwavering support.

Jean-Claude Falmagne Jean-Paul Doignon
Irvine, CA Watermael-Boitsfort, Belgium

May 31, 2010

Mrs. Glaunsinger, Mrs. Fischer and Dr. Engesser, all from Springer-Verlag
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1

Overview and Basic Mathematical Concepts

A student is facing a teacher, who is probing his1 knowledge of high school
mathematics. The student, a new recruit, is freshly arrived from a foreign
country, and important questions must be answered. To which grade should
the student be assigned? What are his strengths and weaknesses? Should the
student take a remedial course in some subject? Which topics is he ready to
learn? The teacher will ask a question and listen to the student’s response.
Other questions will then be asked. After a few questions, a picture of the stu-
dent’s state of knowledge will emerge, which will become increasingly sharper
in the course of the examination.

However refined the questioning skills of the teacher may be, some impor-
tant aspects of his task are not a priori beyond the capability of a clever ma-
chine. Imagine a student sitting in front of a computer terminal. The machine
selects a problem and displays it on the monitor. The student’s response is
recorded, and the database—which keeps track of the set of all feasible knowl-
edge states2 consistent with the responses given so far—is updated. The next
question is selected so as to maximize, in some appropriate sense, the expected
information in the student’s response. The goal is to focus as fast as possible
on some knowledge state capable of explaining all the responses.

The purpose of this book is to expound a mathematical theory for the
construction of such an assessment routine. We shall also describe some related
probabilistic computer algorithms and some applications.

One reason why a machine might conceivably challenge a human exam-
iner resides in the poor memory of the latter. No matter how the concept of
a ‘knowledge state in high school mathematics’ is defined, a comprehensive
list of such states will contain millions of entries3. The human mind is not
especially suitable for fast and accurate scanning of such large databases. We
forget, confuse and distort routinely. A fitting comparison is chess. We also

1 In most instances, we shall conform to current standards in that the fictitious
characters appearing in our story will remain nameless and genderless. Otherwise,
whenever needed, we will use ‘she’ and ‘her’ in even chapters and reserve ‘he’ and
‘his’ for odd chapters.

2 By a ‘feasible knowledge state’, we mean a knowledge state that can conceivably
occur in the population of reference.

3 An example is discussed in Chapter 17.
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2 1 Overview and Basic Mathematical Concepts

have there, before any typical move, a very large number of possibilities to
consider. A few years ago, the top human players were still capable of chal-
lenging the immense superiority of the machine as a scanning device. Today,
however, some of the best chess programs, such as Rybka4, have beaten hu-
man world class champions in blitz tournament. Few people believe that the
human edge, if any still exists, could be long lasting5.

Our developments will be based on a few commonsensical concepts and
the mathematical ones built upon them. They are introduced informally in
our next section.

1.1 Main Constructs

1.1.1 The questions and the domain. We envisage a field of knowledge
that can be parsed into a set of questions, each of which has a correct response.
An instance of a question in high school algebra is

[P1] What are the roots of the equation 3x2 + 11
2 x− 1 = 0 ?

We shall consider a basic set of such questions, called the ‘domain’, that is
large enough to give a fine-grained, representative coverage of the field. In high
school algebra, this means a set containing at least several hundred questions.
Let us avoid any misunderstanding. Obviously, we are not especially interested
in a student’s capability of solving [P1] with the particular values 3, 11

2 and
−1 indicated for the coefficients. Rather, we want to assess the student’s
capability of solving all quadratic equations of that kind. In this book, the
label ‘question’ (we also say ‘problem’, or ‘item’) is reserved for a class of test
units differing from each other by the choice of some numbers in specified
classes, or possibly also by the particular phrasing of a word problem. In that
sense, [P1] is an instance of the question

[P2] Express the roots of the equation αx2 + βx+ γ = 0 in terms of α,
β and γ.

When the machine tests a student on question [P2], the numbers α, β and γ
are selected in some specified manner. Practical considerations may enter in
such a selection. For example, one may wish to choose α, β and γ in such a
way that the roots of the equation can be expressed conveniently as simple
fractions or decimal numbers. Nevertheless, a student’s correct response to
[P1] is revealing of his mastery of [P2]. Objections to our choice of fundamental
concepts are sometimes made, which we shall address later in this chapter.

4 See the website: http://rybkachess.com.
5 Besides, the world class chess players capable of challenging the best chess pro-

grams have gone through a long and punishing learning process, during which
poor moves were immediately sanctioned by a loss of a piece—and of some self-
esteem. No systematic effort is made toward preparing human examiners with
anything resembling the care taken in training a good chess player.
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1.1.2 The knowledge states. The ‘knowledge state’ of an individual is rep-
resented in our approach by the subset of questions in the domain that he is
capable of answering correctly in ideal conditions. This means that he is not
working under time pressure or impaired by emotional turmoil of any kind.
In reality, careless errors arise. Also, the correct response to a question may
occasionally be guessed by a student lacking any real understanding of the
question asked. (This is certainly the case when a ‘multiple choice’ format is
used, but it may also happen in other situations.) In general, an individual’s
knowledge state is thus not directly observable, and has to be inferred from
the responses to the questions. The connections between the knowledge state
and the actual responses are explored in Chapters 11, 12, 13, and 14 where
the probabilistic aspects of the theory are elaborated.

1.1.3 The knowledge structure. In our experience, for any non-trivial do-
main, the number of feasible knowledge states tends to be quite large. In an
experiment reported in Chapter 17, for example, the number of knowledge
states obtained for a domain containing around 300 questions in beginning
algebra (often called ‘Algebra 1’ in the US) is on the order of several million.
A working list of states can be obtained by interviewing educators using an
automated questioning technique called ‘QUERY’ (cf. 1.1.9 and Chapter 15; see
Koppen and Doignon, 1990; Koppen, 1993). Such a list can then be amended
by a statistical analysis of students’ responses in the course of assessments.

Several million feasible states may seem to be an excessively large number
of possibilities to sort out. However, it is but a minuscule fraction of the set
of all 2300 subsets of the domain. The collection of all the knowledge states
captures the organization of the knowledge and will be referred to as the
‘knowledge structure.’ Figure 1.1 displays a miniature example of a knowledge
structure for the domain

Q = {a, b, c, d, e}.
In this case, the number of states is small enough that a graphic representation
is possible. Considerably more complex examples are discussed later in this
book6. The graph in Figure 1.1 represents the knowledge structure

K =
{
∅, {a}, {b}, {a, b},{a, d}, {b, c}, {a, b, c},

{a, b, d}, {b, c, d}, {a, b, c, d}, Q
}
. (1.1)

This knowledge structure contains 11 states. The domain Q and the empty
set ∅, the latter symbolizing complete ignorance, are among them. The arcs
of the graph represent the covering relation of set inclusion: an arc linking a
state K to a state K ′ located to its right in the graph means that K ⊂ K ′

(where ⊂ denotes the strict inclusion), and that there is no state K ′′ such that
K ⊂ K ′′ ⊂ K ′. Such a graphic representation is often used. When scanned
from left to right, it suggests a learning process: at first, a student knows

6 In particular, in Chapter 17.



4 1 Overview and Basic Mathematical Concepts

                                         a, d

a                                       a, b, d

                    a, b

b                                       a, b, c                     a, b, c, d                      

                    b, c

                                         b, c, d

Q

Figure 1.1. The knowledge structure of Equation (1.1).

nothing at all about the field, and is thus in state ∅, which is represented
by the empty box on the left of the figure. He may then gradually progress
from state to state, following one of the paths in Figure 1.1, until a complete
mastery of the topic is achieved in state Q. This idea suggests the central
mechanisms of the theory, which are outlined in our next subsection.

The knowledge structure of Figure 1.1 and Equation (1.1) is not artificial.
It was obtained empirically, and successfully tested on a large number of
subjects, in the framework of a probabilistic model. The questions a, . . . , e
were problems in elementary Euclidean geometry. The text of these questions
can be found in Figure 12.1 on page 216. This work is due to Lakshminarayan
(1995) and we discuss it in Chapter 12.

1.1.4 Learning spaces. The step-by-step learning process outlined above
suggests the two core axioms of the theory. These axioms concern a knowl-
edge structure K on a domain Q; we suppose thus that both ∅ and Q are
states of K. We only give informal statements of these axioms here (for a
mathematical formulation, see Section 2.2 on page 26).

1. Learning smoothness. If the state K of the learner is included in some
other state L, then the learner can reach state L by mastering the missing
items one by one.

This implies that step-by-step learning is feasible.

2. Learning consistency. Suppose that a learner in state K is capable of
mastering some new item q. Then, any learner in some state L including
K either has already mastered q, or is also capable of mastering it.

In short: knowing more does not prevent from learning something new.

A knowledge structure satisfying the these two axioms is a ‘learning space.’
These axioms seem a priori reasonable from a pedagogical standpoint. They
have strong, useful consequences.
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1.1.5 The fringes of a knowledge state. A knowledge state may some-
times be quite large. In beginning algebra, for example, the knowledge state
of a student may contain 200 items. Representing a student’s mastery of be-
ginning algebra by such a long list is not helpful. Fortunately, the axioms
of a learning space enable the exact specification of any knowledge state by
its two ‘fringes’, which are almost always much smaller sets. Intuitively, the
‘outer fringe’ KO of a knowledge state K is the set of items that a student is
ready to learn. In set-theoretic terms, KO contains all those items q such that
K ∪ {q} is also a state. (The student can thus progress from state K to state
K ∪ {q} simply by mastering q.) The ‘inner fringe’ KI is the complementary
concept, namely: KI contains exactly those items which, when removed from
K, yield another state of the learning space7. One interpretation of the inner
fringe is that it contains the most advanced items in a student’s state. In a
learning space, any knowledge state is defined by its two fringes. The formal
definition of the fringes and the relevant theorem are 4.1.6 and 4.1.7.

As an illustration, the two fringes of the knowledge state {b, c, d} in the
learning space displayed in Figure 1.1 are

{b, c, d}O = {a} and {b, c, d}I = {d}.

The economy realized in replacing the state {b, c, d} by its fringes {a} and {d}
is trivial in this case, which is not typical.

1.1.6 Knowledge spaces. We turn to another important consequence of the
two axioms of a learning space. Examining Figure 1.1 reveals that the family
K of states satisfies a powerful property: if K and K ′ are any two states in
K, then K ∪K ′ is also a state. In mathematical lingo: the family K is ‘closed
under finite union.’ A knowledge structure satisfying ‘closure under union’ is
called a ‘knowledge space.’ This property results from the two axioms: any
learning space is a knowledge space8 (cf. Theorem 2.2.4). The closure under
union plays a central role. It allows, for example, to summarize exhaustively
any learning space by a distinguished subfamily of its states called the ‘base’ of
the learning space. In many cases, this subfamily can be considerably smaller
than the learning space itself, which may be of critical importance for some
purposes, such as the economical storage of a learning space in the memory
of a computer.

1.1.7 Wellgradedness. Still another consequence of the two axioms of a
learning space is important in this work, for example in connection with some
assessment procedures. These procedures are designed to uncover the knowl-
edge state of a student (see Chapters 13 and 14). Consider the two states
{a, d} and {b, c, d} of the knowledge struture K of Equation (1.1). They differ
by exactly three items, namely a, b and c (for this reason, we will say that

7 Obviously, the outer fringe of the domain and the inner fringe of the empty state
∅ are both empty.

8 But not conversely. Can you think of a counterexample?
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{a, d} and {b, c, d} are at distance 3 from one another). It happens that the
state {a, d} can be transformed into the state {b, c, d} by a sequence of three
elementary steps, namely along the ‘path’ of the states

{a, d}, {a, b, d}, {a, b, c, d}, {b, c, d}.

Such a path is ‘tight’ because each of its states differs from the next one
(if any) in exactly one item. It can be checked that a similar property holds for
any two states inK, whatever their distance is. For this reason, we say that the
knowledge structureK is ‘well-graded.’ The notion of wellgradedness is defined
in 2.2.2 and investigated in Chapter 4. Wellgradedness is an essential property
because it guarantees that any state can be summarized by its fringes, without
loss of information (see Theorem 4.1.7).

1.1.8 Surmise functions and clauses. Knowledge spaces can be regarded
as a generalization of quasi orders (i.e. reflexive and transitive relations; see
1.6.3, 1.6.4 and 1.6.6). Indeed, according to a classical result of Birkhoff (1937),
any family of sets closed under both union and intersection can be recoded
as a quasi order, and vice versa. Moreover, the correspondence is one-to-one
(cf. Theorem 3.8.3). A similar representation can be obtained for families
of sets closed only under union, but the representing concept is not a quasi
order, nor even a binary relation. Rather, it is a function σ associating, to each
item q in Q, a family σ(q) of subsets of Q. The family σ(q) has the following
interpretation: if a student has mastered question q, that student must also
have mastered all the items in at least one of the sets in σ(q). One may think
of a particular element of σ(q) as a possible set of prerequisites for q. This
is consonant with the view that there may be more than one way to achieve
the mastery of any particular question q. This interpretation leads to impose
certain natural conditions on the function σ, which will be referred to as a
‘surmise function.’ The elements of σ(q) for a particular item q will be called
the ‘clauses’ for q. We may also call them ‘backgrounds’ of q, or ‘foundations’
for q. In the example of Figure 1.1, a subject having mastered item d must
also have mastered either at least item a, or at least items b and c. So, Item
d has two clauses: we have

σ(d) = {{a, d}, {b, c, d}}.

Notice that these two clauses for d contain d itself. By convention, any clause
for an item contains that item. In other words, any item is a prerequisite for
itself. (This property generalizes the reflexivity of a partial order. In 5.1.2, we
also discuss a condition on the surmise function generalizing transitivity.)

In the special case where the family of states is closed under both union
and intersection, any question q has a unique clause. In this case, the surmise
function σ is essentially a quasi order (i.e. becomes a quasi order after a trivial
change of notation): the unique clause for an item q contains q itself, plus all
the items which are either equivalent to q or precede q in the quasi order.
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1.1.9 Entailment relations and human expertise. We will also use an-
other representation of a knowledge space, which has an important function in
practical applications. Human experts (such as practiced teachers) may pos-
sess critical information concerning the knowledge states which are feasible in
some empirical situation. However, straightforward queries would not work.
We cannot realistically ask a teacher to give a complete list of the feasible
states, with the hope of getting a useful response9. Fortunately, a recoding
of the concept of knowledge space is possible, which leads to a more fruitful
approach. Consider asking a teacher queries of the type

[Q1] Suppose that a student has failed items q1, . . . , qn. Do you believe
this student would also fail item qn+1? You may assume that chance
factors, such as lucky guesses and careless errors, play no role in the
student’s performance, which reflects his actual mastery of the field.

(We reserve the label ‘[Q0]’ for the special case where n = 1; see Chapter 7.)

The set of positive responses to all queries of that kind, for a given domain Q,
define a binary relation P pairing subsets of Q with elements of Q. Thus, a
positive response to query [Q1] is coded as

{q1, . . . , qn}P qn+1.

It can be shown that if the relation P satisfies certain natural conditions, then
it uniquely specifies a particular knowledge space. The relation P is then called
an ‘entailment.’ Algorithms based on that relation have been written, which
are instrumental when querying an expert. The most widely used algorithm
is the ‘QUERY’ routine. In applying one of these algorithms, it is supposed
that an expert relies on an implicit knowledge space to respond to queries of
the type [Q1]. The output of the procedure is the personal knowledge space
of the expert. We discuss these questioning procedures in Chapter 15 and 16.

1.1.10 Remarks. a) Obviously, a teacher’s responses to questions of type
[Q1] may be unreliable if n is large, or even with n = 1. To alleviate this prob-
lem Cosyn and Thiéry (2000) (cf. also Heller, 2004) developed a sophisticated
version of the QUERY routine, called ‘PS-QUERY.’ The ‘PS’ in PS-QUERY stands
for ‘pending status’ and signals the fact that the implementation of an ex-
pert’s response is delayed until it is confirmed by a later response. If a second
response conflicts with the earlier one, both of them are discarded.

b) In practice, only a very small fraction of the queries of the form [Q1]
must be asked. The procedure typically terminates with n ≤ 5. Actually, even
with just n = 1 the procedure will deliver all the states of the knowledge
space. However, if the procedure is stopped at that point, many fictitious
states will remain which would be eliminated by further questioning. The
resulting knowledge space must then be pruned down by a statistical analysis
of student’s data based, for example, on the elimination of states with low
probability or by other methods (cf. Chapter 15).

9 Besides, as mentioned earlier, there may be millions of states in some cases.
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c) The QUERY and other similar routines, with or without the help of
a statistical analysis of students’ data, only guarantee that a knowledge
space will emerge, which will not necessarily be a learning space10. Since
obtaining a learning space is often the goal, a relevant modification of the
QUERY procedure is presented in Chapter 16. The new procedure implements
only the QUERY responses that will produce a learning space. Efficient tests
are provided to this aim. Another method to build learning spaces is due to
Eppstein, Falmagne, and Uzun (2009) and is briefly discussed in the same
chapter. The idea is to first build a knowledge space and then supplement it
by carefully chosen additional states turning the space into a learning space.

As mentioned in 1.1.2, in realistic situations, subjects sometimes fail prob-
lems that they fully understand, or provide amazingly correct responses to
problems that they do not understand at all. That is, the knowledge states
are not directly observable. The usual way out of such difficulties is a proba-
bilistic approach.

1.1.11 Probabilistic knowledge structures. Probabilities may enter in
two ways in the theory. We first suppose that to each knowledge state K is at-
tached a number P (K), which can be interpreted as the probability of finding,
by a random sample in the population of reference, a subject in state K. The
relevant structure (Q,K, P ), where Q is the domain and K the set of states, is
called a ‘probabilistic knowledge structure.’ Next, we shall introduce, for any
subset R of the domain Q and any state K in K, a conditional probability
r(R,K) that a subject in state K would provide correct responses to all the
items in R, and only to those items. Any subset R of the domain Q is a ‘re-
sponse pattern.’ The overall probability ρ(R) of observing a response pattern
R can be computed from the weighted sum

ρ(R) =
∑
K∈K

r(R,K)P (K).

Formal definitions of these probabilistic concepts will be found in Chapters
11 and 12 where specific forms of the functions P and r are also investigated.
Empirical tests are also described.

1.1.12 Assessment procedures. The machinery of knowledge states, (prob-
abilistic) structures, and learning spaces provides the foundation for a number
of algorithmic assessment procedures. The goal of such a procedure is to un-
cover, as efficiently as possible, the knowledge state of a student by asking
appropriate questions from the domain. The most widely used algorithm,
which is discussed in Chapter 13, proceeds by setting up an a priori likelihood
function on the set of all states. This likelihood function is then updated af-
ter each response of the student by a Bayesian operator. The choice of the
next question is based on the current likelihood function. The output of the

10 An exception is the questioning data restricted to the case n = 1 in [Q1]. As
pointed out, however, this may result in a large number of fictitious states.
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assessment algorithm is a knowledge state which best represents the student’s
competence in the domain. As such a result may be unwieldy—we made that
point in 1.1.5—this output is then routinely transformed into the fringes of
the selected state.

A practical implementation of an automated system built on the concepts
of this book is outlined in Section 1.3.

1.2 Possible Limitations

The concept of a knowledge state, which is at the core of our work, is some-
times criticized on the grounds that it trivializes an important idea. In the
minds of some critics, the concept of a ‘knowledge state’ should cover much
more than a set of questions fully mastered by a student. It should contain
many other features related to the student’s current understanding of the ma-
terial, such as the type of errors that he is likely to make. A reference to the
work of Van Lehn (1988) is often made in this connection.

For the most part, such criticisms come from a misconception of the exact
status of the definition of ‘knowledge state’ in our work. An important as-
pect of this work has consisted in developing a formal language within which
critical aspects of knowledge assessment could be discussed and manipulated.
‘Knowledge state’ is a defined concept in that formal language. We make no
claim that the concept of a ‘knowledge state’ in our sense captures all the
cognitive features that one might associate with such a word, any more than
in topology, say, the concept of a compact set captures the full physical intu-
ition that might be evoked by the adjective “compact.” As far as we know, the
concept of a knowledge state has never been formally defined in the literature
pertaining to computerized learning. There was thus no harm, we believed, in
appropriating the term, and giving it a formal status. On the other hand, it
is certainly true that if some solid information is available regarding refined
aspects of the students’ performance, such information could be taken into
account in the assessment. There are various ways this can be achieved.

As a first example, we take the type of error mechanisms discussed by
Van Lehn (1988). Suppose that for some or all of our questions, such error
mechanisms have been elucidated. In other words, erroneous responses are
informative, and can be attributed to specific faulty rules that the student
applies. One possibility would be to analyze or redesign our domain (our basic
set of questions) in such a manner that a knowledge state itself would involve
the diagnosis of error mechanisms. After all, if a student routinely applies
some faulty rule, this rule should be reflected in the pattern of responses to
suitably chosen questions. A description of the knowledge state could then
include such error mechanisms.

More generally, a sophisticated description of the knowledge states could
be obtained by a precise and detailed tagging of the items. For example, it is
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possible to associate, to each item in the domain, a detailed list of information
featuring entries such as: the part of the field to which this item belongs (e.g.:
calculus, derivatives; geometry, right triangles), the type of problem (e.g.:
word problem, computation, logical reasoning), the expected grade at which
this item should be learned, the concepts used in the formulation or in the
solution of this item, the most frequent type of misconceptions, etc.

When an assessment algorithm has uncovered the state of some student,
these tags can be used to prepare, via various manipulations, a comprehen-
sive description of the state in everyday language. We give a mathematical
development of this idea in Chapter 6.

1.3 A Practical Application: The ALEKS System

The computer educational system ALEKS provides on the Internet11 a bilin-
gual (English-Spanish) educational environment with two modules: an assess-
ment module and a self-paced learning module with many tools. The name
‘ALEKS’ is an acronym for ‘Assessment and Learning in Knowledge Spaces.’
The assessment module is based on the work described in this monograph.
Its working version implements one of the continuous Markov procedures pre-
sented in Chapter 13. It relies on knowledge structures built with the tech-
niques of Chapters 7, 15 and 16, refined by extensive analyses of student data.
The system currently12 covers all of grade 3-12 mathematics including pre-
calculus and geometry, plus a few other topics such as elementary chemistry,
accounting and undergraduate statistics. The assessment is comprehensive in
the sense that the set of all possible questions covers the whole curriculum
in the topic. An ‘answer editor’ permits the student to enter the responses
in a style imitating a paper and pencil method. In contrast with most stan-
dardized tests, almost all the questions have open responses13. At the end of
the assessment, the system delivers a detailed report describing the student’s
accomplishments, making recommendations for further learning, and giving
immediate access to the learning module of the system.

While using the learning module, the student may request an ‘explana-
tion’ of any problem proposed by the system. A variety of dedicated cal-
culators and a mathematics dictionary are available on-line. The dictionary
provides definitions of all the technical terms and is accessed by clicking on
any highlighted word. Both the report and the learning module of the system
are programmable, so that they can be made consistent with the educational
standards of every state in the US. The current default standards of the sys-
tem are the California Standards. A user-friendly tool allows the teacher to
modify these standards, if necessary.

11 See www.aleks.com.
12 In the spring of 2010.
13 In the few cases where a multiple choice question is used, the number of possible

responses offered to the student is large.
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Other systems exist, which are also based on the concepts of knowledge
structures and knowledge states in the sense of this book and similar in spirit
to the ALEKS system. One is the system created by Cornelia Dowling and her
colleagues (see, e.g. Dowling, Hockemeyer, and Ludwig, 1996). Several systems
have been developed by Dietrich Albert and his team, in cooperation with
project partners. We must mention in particular RATH (Hockemeyer, Held, and
Albert, 1998), APeLS (Conlan, Hockemeyer, Wade, and Albert, 2002), iClass
(Albert, Nussbaumer, and Steiner, 2008), ELEKTRA (Kickmeier-Rust, Marte,
Linek, Lalonde, and Albert, 2008), and MedCAP (Hockemeyer, Nussbaumer,
Lövquist, Aboulafia, Breen, Shorten, and Albert, 2009). Other relevant ref-
erences are Albert (1994); Albert and Held (1994); Albert and Hockemeyer
(1997); Albert and Lukas (1999); Desmarais and Pu (2005); Desmarais, Fu,
and Pu (2005); and Pilato, Pirrone, and Rizzo (2008).

1.4 Potential Applications to Other Fields

Even though our theoretical developments have been primarily guided by a
specific application in education, the basic concepts of knowledge structure,
knowledge space and learning spaces are very general, and have potential uses
in superficially quite different fields. A few examples are listed below.

1.4.1 Failure analysis. Consider a complex device, such as a telephone in-
terchange (or a computer, or a nuclear plant). At some point, the device’s be-
havior indicates a failure. The system’s administrator (or a team of experts),
will perform a sequence of tests to determine the particular malfunction re-
sponsible for the difficulty. Here, the domain is the set of observable signs.
The states are the subsets of signs induced by all the possible malfunctions.

1.4.2 Medical diagnosis. A physician examines a patient. To determine the
disease (if any), the physician will check which symptoms are present. As in
the preceding example, a carefully designed sequence of verifications will take
place. Thus, the system is the patient, and the state is a subset of symptoms
specifying his medical condition. For an early example of a computerized med-
ical diagnosis system, see Shortliffe and Buchanan (1975) or Shortliffe (1976).
As a web search would indicate, the literature on this topic is vast and quickly
expanding.

1.4.3 Pattern recognition. A pattern recognition device analyzes a visual
display to detect one of many possible patterns, each of which is defined by
a set of specified features. Consider a case in which the presence of features
is checked sequentially, until a pattern can be identified with an acceptable
risk of error. In this example, the system is a visual display, and the possible
patterns are its states. For a first contact with the vast literature on pattern
recognition, consult, for instance, Duda and Hart (1973) and Fu (1974).
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1.4.4 Axiomatic systems. Let E be a collection of well-formed expressions
in some formal language, and suppose that we also have a fixed set of deriva-
tion rules. Consider the relation I on the set of all subsets of E, with the
following interpretation: we write A IB if all the expressions in B are deriv-
able from the expressions in A by application of the derivation rules. We call
any K ⊆ E a state of I if B ⊆ K whenever A ⊆ K and AIB. It is easily shown
that the collection L of all states is closed under intersection; that is, ∩F ∈ L

for any F ⊆ L (See Problem 2 in Chapter 3). Notice that this constraint is
the dual of that defining a knowledge space, in the sense that the set

L = {Z ∈ 2E Z ∈ L}
is closed under union.

1.5 On the Content and Organization of this Book

A synopsis of some basic, standard mathematical concepts and notation will be
found in the next section of this chapter. This synopsis contains entries such as
‘binary relation’, ‘partial order’, ‘chains’, ‘Hausdorff maximal principle’, etc.
In writing this book, we had in mind a reader with a minimum mathematical
background corresponding roughly to that of a mathematics major: e.g. a
three semester sequence of calculus, a couple of courses in algebra, and a
couple of courses in probability and statistics. However, a reader equipped
with just that may find the book rough going, and will have to muster up
a fair amount of patience and determination. To help all readers, problem
solving exercises are provided at the end of each chapter.

Chapters 2–10 are devoted to algebraic aspects of the theory. They cover
the main concepts, learning spaces, knowledge spaces, and a variety of an-
cillary topics, such as: surmise functions, entailments, and the concept of
an ‘assessment language’ (Chapter 9). The axioms for a learning space turn
out to be equivalent to those defining an ‘antimatroid’ in combinatorics. We
devote part of Chapter 2 to the relationship between learning spaces and
(union-closed) antimatroids14. The connection between learning spaces and
the semigroups of transformations called ‘media’ is discussed in Chapter 10.

Chapters 11 and 12 deal with probabilistic knowledge structures. These
two chapters develop a number of stochastic learning models describing the
successive transitions, over time, between the knowledge states. Chapter 13
and 14 are devoted to various stochastic algorithms for assessing knowledge.
Chapters 15 and 16 describes some procedures for the construction of knowl-
edge spaces and learning spaces in a practical situation. Chapter 17 describes
an evaluation of the validity and reliability of an assessment by the ALEKS

system, based on a very extensive data set. We end up in Chapter 18 with a
list of open problems which we believe to be of interest. For convenience of

14 Two dual versions of the concept of antimatroid are in used in the combinatoric
literature: union-closed and intersection-closed.
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reference, we give on pages 379-396 a glossary of the standard mathematical
symbols used and of the new formal concepts introduced in this book. Fairly
extensive definitions of these concepts can be found there.

Chapters are divided into sections and subsections. A single lexicographic
system is used. The title

“1.4 Potential Applications to Other Fields”

on page 11 is that of the fourth section of Chapter 1. This section is organized
into four ‘subsections.’ The first subsection in Section 1.4 is entitled:

“1.4.1 Failure Analysis.”

Thus, when a number “n.m.p” is used for a subsection, the “n” denotes
the chapter number and the “m” and “p” are the section and subsection
numbers within that chapter. The most frequent titles for subsections will be
“Examples”, “Definition”, “Theorem”, and “Remark(s)15.” Minor results may
sometimes appear as remarks. Especially difficult chapters, sections, subsec-
tions and exercises are marked by a star. We also use a star to indicate a part
of the book that can be omitted at first reading without loss of continuity.

Some printing conventions should be remembered. We put single quotation
marks around a term used in a technical sense, but yet undefined. (Only
the first occurence of the term is so marked.) A word or phrase mentioned,
but not used, is flanked by double quotation marks. (This does not apply to
mathematical symbols, however.) A slanted font is used for quotations, for
technical terms in their definition, and for the text of theorems or lemmas.
The preceding pages contain many applications of all these conventions.

1.6 Basic Mathematical Concepts and Notation

1.6.1 Set theory, relations, mappings. Standard set-theoretic notation
will be used throughout. We sometimes write + for the disjoint union. Set
inclusion is denoted by ⊆ and proper (or strict) inclusion by ⊂. The size, or
cardinality, or cardinal number of a set Q is denoted by |Q|. The collection of
all subsets of Q, or power set of Q, is symbolized by 2Q. An element (x, y) of
the Cartesian product X × Y is often abbreviated as xy. A relation R from a
set X to a set Y is a subset of X × Y . The complement of R (with respect to
X × Y ) is the relation R = (X × Y ) \R, also from X to Y . The specification
“with respect to X×Y ” is usually omitted when no ambiguity can arise. The
phrase “with respect to” is occasionally abbreviated by the acronym “w.r.t.”
In the same vein, “l.h.s.” and “r.h.s.” are shorthand for the left hand side
and the right hand side, respectively, of an equation or a logical formula. The
converse of R is the relation

R−1 = {yx ∈ Y ×X xRy}
from Y to X.

15 The style of this introductory chapter is not representative of the rest of the book.



14 1 Overview and Basic Mathematical Concepts

A mapping, or function, f from the set X to the set Y is a relation from
X to Y such that for any x ∈ X, there exists exactly one y ∈ Y with x f y;
we then write y = f(x). This mapping is injective if f(x) = f(x′) implies
x = x′ for all x, x′ ∈ X. It is surjective if for any y ∈ Y there is some x ∈ X
with y = f(x). Finally, f is bijective, or a one-to-one correspondence, (with
‘one-to-one’ often abbreviated as 1–1), if f is both injective and surjective.
The converse of a bijective function is called its inverse.

A detailed treatment of relations can be found, for example, in Suppes
(1960) or Roberts (1979, 1984). Some basic facts and concepts are recalled in
the following few subsections.

1.6.2 Relative product. The (relative) product of two relations R and S is
denoted by

RS = {xy ∃z : xRz ∧ zSy},
in which ∃ stands for “there exists.” When R and S are explicitly given as
relations from X to Y and from Z to W respectively, the element z in the
above formula is to be taken in Y ∩Z, and the relation RS is from X to W . It is
easy to check that the product operation is associative: for any three relations
R, S and T, we have (RS)T = R(ST). So, the parentheses play no useful
role. Accordingly, we shall write R1R2 · · ·Rk for the product of k relations
R1,R2, . . . ,Rk. For any relation R from a set X to itself and any positive
integer n, we write Rn for the nth (relative) power of the relation R, that is

Rn = RR · · ·R︸ ︷︷ ︸
n times

.

By convention, R0 denotes the identity relation on the ground set X, which
will always be specified explicitly or by the context. For a relation R from X
to Y , we set R0 = {xx x ∈ X ∪ Y }.

1.6.3 Properties of relations. The symbol ¬ is read “not” and denotes the
logical negation. A relation R on a set X is

reflexive (on X) when xRx for all x ∈ X;
symmetric (on X) when xRy implies yRx for all x, y ∈ X;
asymmetric (on X) when xRy implies ¬(yRx) for all x, y ∈ X;
antisymmetric (on X) if (xRy and yRx) implies x = y for all x, y ∈ X.

1.6.4 Transitive closure. A relation R is transitive if whenever xRy and
yRz, we also have xRz. More compactly, in the relative product notation of
1.6.2, R is transitive if R2 ⊆ R. The transitive closure (or more precisely
reflexo-transitive closure) of a relation R is the relation t(R) defined by

t(R) = R0 ∪ R1 ∪ · · · ∪ Rk ∪ · · · = ∪∞k=0 R
k.
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1.6.5 Equivalence relations and set partitions. An equivalence relation
R on a set X is a reflexive, transitive, and symmetric relation on X. It corre-
sponds exactly to a partition of X, that is, a family of nonempty subsets of X
which are pairwise disjoint and whose union is X: these subsets, or classes of
the equivalence relation R, are all the subsets of X of the form {x ∈ X xRz},
for some z ∈ X.

1.6.6 Quasi orders, partial orders. A quasi order on a set X is any rela-
tion which is transitive and reflexive on X, as for instance the relation ≤ on
the set of all real numbers. A set equipped with a quasi order is quasi ordered.
An antisymmetric quasi order is a partial order. A strict partial order on a
set X is an irreflexive and transitive relation on X.

Any quasi order P on X gives rise to the equivalence relation P ∩ P−1.
A partial order P∗ is obtained on the set X∗ of all equivalence classes by
setting C P∗ C ′ if cPc′ for some (and thus for all) c in C and c′ in C ′. The
partially ordered set (X∗,P∗) is called the reduction of the quasi ordered set
(X,P). An element x in a quasi order (X,P) is maximal when xPy implies
yPx, for all y ∈ X. It is a maximum if it is maximal and moreover yPx for
all y ∈ X. Minimal elements and minimum are similarly defined. A partially
ordered set can have at most one maximum and one minimum (Problem 12).

1.6.7 Weak orders, linear orders. A weak order P on the set X is a quasi
order on X which is complete, in the sense that for all x, y ∈ X we have xPy
or yPx. The reduction of a weak order is a linear, or simple, or total order.

1.6.8 Covering relation, Hasse diagram. In a partially ordered set (X,P),
the element x is covered by the element y when xPy with x 6= y and moreover
xPtPy implies x = t or t = y. The covering relation or Hasse diagram of
(X,P) is the relation P̆ containing all the pairs xy with y covering x. When
X is infinite, the Hasse diagram of (X,P) may be empty even though P it-
self is not empty. When X is finite, the Hasse diagram of (X,P) provides a
comprehensive summary of P in the sense that the transitive closure of the
Hasse diagram of (X,P) is equal to P. In fact, in this case, the Hasse diagram
of (X,P) is the smallest relation having its transitive closure equal to P (cf.
Problem 13).

1.6.9 Graphs. When the set X of a partial order (X,P) is small, the Hasse
diagram of P can be conveniently displayed by a ‘graph’ drawn according to
the following conventions: the elements of X are represented by points on a
page, with an ascending edge from x to y when x is covered by y. Such a graph
is called a directed graph or digraph, because the edges have an orientation
(upward in this case)16. Formally, there is a 1-1 correspondence between the

Hasse diagram P̆ and the collection of all (directed) edges of its representing

16 In some cases, the drawing may be rotated for convenience, so that an edge may
be drawn left-right rather than down-up.
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graph. The points of such a graph are refered to as vertices. The edges of a
directed graph are sometimes called arcs.

More generally, the language of relations is coextensive with that of graphs,
with the latter applying when a geometrical representation is serviceable.

1.6.10 Chain, Hausdorff Maximality Principle. A chain in a partially
ordered set (X,P) is any subset C of X such that cPc′ or c′Pc for all c, c′ ∈ C
(in other words, the order induced by P on C is linear). In several proofs
belonging to starred material, the Hausdorff maximality principle is invoked
to establish the existence of a maximal element in a partially ordered set. This
principle is equivalent to Zorn’s Lemma and states that a quasi ordered set
(X,P) admits a maximal element whenever all its chains are bounded above,
that is: for any chain C in X, there exists b in X with cPb for all c ∈ C.
For details on the Hausdorff Maximality Principle and related conditions, see
Dugundji (1966) or Suppes (1960).

1.6.11 Basic number sets. The following notation is used for the basic sets:

N, the set of natural numbers (excluding 0);
Z, the set of integer numbers;
Q, the set of rational numbers;
R, the set of real numbers;
R+, the set of (strictly) positive real numbers.

A set S is countable if there exists an injective function S → N. (Such a
function may be surjective.)

We denote by ]x, y[ = {z ∈ R x < z < y} the real open intervals, and by
]x, y], [x, y[ and [x, y] the half open and closed intervals.

1.6.12 Metric spaces. A mapping d : X ×X → R is called a distance on X
if it satisfies the following three conditions for all x, y, z ∈ X:

(1) d(x, y) ≥ 0, with d(x, y) = 0 iff x = y (i.e., d is positive definite);

(2) d(x, y) = d(y, x) (i.e., d is symmetric);

(3) d(x, y) ≤ d(x, z) + d(z, y) (the triangular inequality).

A metric space is a set equipped with a distance. As an example, let E be
any finite set. The symmetric difference distance or canonical distance on the
power set of E is defined by setting, for A,B ∈ 2E :

d(A,B) = |A4B| (1.2)

(cf. Problem 7). Here, A 4 B = (A \ B) ∪ (B \ A) denotes the symmetric
difference of the sets A and B.
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1.6.13 Probabilistic and statistical concepts. Whenever needed, we use
the standard techniques of probability theory, stochastic processes and statis-
tics. The symbol P denotes the probability measure of the probability space
under consideration. Some statistical techniques dealing with goodness-of-fit
tests are briefly reviewed in Chapter 11.

1.7 Original Sources and Main References

A first pass at developing a mathematical theory for knowledge structures
was made by Doignon and Falmagne (1985). A rather technical follow up pa-
per is Doignon and Falmagne (1988). The stochastic aspects of the theory
were initially presented in Falmagne and Doignon (1988a,b). A comprehen-
sive description of our program, intended for non mathematicians, is given
in Falmagne, Koppen, Villano, Doignon, and Johannesen (1990). Short intro-
ductions to knowledge space theory are contained in Doignon and Falmagne
(1987) and Falmagne (1989b). A more leisurely paced text is Doignon (1994a).

The application in the schools and universities that began around 1999
in the form of the internet based software ALEKS provided the impetus for
further developments, especially in the form of statistical analyses of stu-
dents’ data. General sources for such results are Falmagne, Cosyn, Doignon,
and Thiéry (2006a) and Cosyn, Doble, Falmagne, Lenoble, Thiéry, and Uzun
(2010). These works can also be regarded as up-to-date, non-technical in-
troductions to the topic. In the course of these applications, an important
theoretical change of focus took place, already alluded to in our preface and
earlier in this chapter. Originally, the essential axiom of the system was the
closure under finite union: if K and L are knowledge states, then so is K ∪L.
In the framework of finite knowledge structures, this assumption defines the
knowledge spaces. While adopting such a rule can be convincingly demon-
strated to be sound, its pedagogical justification is not a priori overwhelm-
ing17. Another, quite different reason for a changed outlook lies in the need
for a convenient (economical, evocative) description of the knowledge state of
a student at the end of an assessment. In this respect, Doignon and Falmagne
(1997) showed that wellgradedness is the key concept, because it allows the
description of any knowledge state by its fringes. A knowledge state may con-
tain many items. Providing the user—a teacher, for example—with a full list
may not be helpful, and summarizing such a large set of items in a mean-
ingful way is a challenge. These considerations, added to the fact that the
closure under union axiom was not persuasive, led Falmagne to propose a re-
axiomatization of the theory in the guise of a learning space (cf. 1.1.4), which
is more compelling from a pedagogical standpoint and now forms the core

17 The rationale given in Doignon and Falmagne (1999) was that if two students,
whatever their respective knowledge states are, collaborate intensely, then one of
them may end up mastering all the items originally mastered by either of them.
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of the theory. In a learning space, any knowledge state can be summarized
uniquely by its fringes (cf. 1.1.5). The definition of “fringe” and the relevant
theorem are 4.1.6 and 4.1.7. Recently, Cosyn and Uzun (2009) have shown
that a knowledge structure is a learning space if and only if it is a knowledge
space satisfying a condition of ‘wellgradedness.’ This work is discussed and
expanded on in Chapter 2.

Since its inception in 1985, the work on knowledge spaces and learning
spaces came to the attention of a number of other researchers, who provided
their own contributions to the development of the field. Dietrich Albert and
his team in Austria, Cornelia Dowling, Ivo Duntsch, Günther Gediga, Jurgen
Heller and Ali Ünlü in Germany, Mathieu Koppen in Holland, and Francesca
Cristante, Luca Stefanutti and their colleagues at the University of Padua in
Italy, must be mentioned in that category. More specific references pertaining
to particular aspects of our work and that of others are given in the last section
of each chapter of this book. An extensive database on knowledge spaces, with
hundreds of titles, is maintained by Cord Hockemeyer at the University of
Graz: http://wundt.uni-graz.at/kst.php (see also Hockemeyer, 2001).

As indicated in Subsections 1.4.1 to 1.4.4, our results are potentially appli-
cable to other fields, such as computerized medical diagnosis, pattern recog-
nition or the theory of feasible symbologies (for the latter, see Problem 14 of
Chapter 3).

The literature on computerized medical diagnosis is vast and quickly ex-
panding. We only mention here the well-known early example of Shortliffe
and Buchanan (1975) and Shortliffe (1976). For pattern recognition, we refer
the reader to Duda and Hart (1973) and Fu (1974). For symbology theory,
the reader may consult Jameson (1992).

There are obvious similarities between knowledge assessment in the frame-
work of learning spaces as developed in this book, and the technique known
as ‘tailor testing’ in psychometrics. In both situations, subjects are presented
with a sequence of well-chosen questions, and the goal is to determine, as
accurately and as efficiently as possible, their mastery of a given field. There
is, however, an essential difference in the theoretical foundations of the two
approaches. In psychometric theory, it is assumed that the responses to the
items reflect primarily the subject’s ability with respect to some intellectual
traits, and most often, just one such trait. In constructing the test, the psy-
chometrician chooses and formats the items so as to minimize the impact of
other determinants of the subject’s performance, such as schooling, culture,
or knowledge in the sense of this book. In fact, the primary or sole aim of
such psychometric tests is to measure the subject’s abilities on some numer-
ical scale. The ubiquitous I.Q. test is the exemplary case of this enterprise.
Accordingly, the models underlying a ‘tailor testing’ procedure tend to be
simple numerical structures, in which a subject’s ability is represented as a
real number18. Psychometric models are developed either in the guise of Clas-

18 Or possibly as a real vector with a small number of dimensions.
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sical Test Theory (CTT) for which a standard source is still Lord and Novick
(1974) (but see also Wainer and Messick, 1983), or of the more recent Item
Response Theory (IRT) (cf., for example, Nunnally and Bernstein, 1994). For
tailor testing, the reader may consult Lord (1974), Weiss (1983), or Wainer,
Dorans, Eignor, Flaugher, Green, Mislevy, Steinberg, and Thissen (2000). A
few authors have proposed to escape the unidimensionality of classical ‘tailor
testing.’ As an example, Durnin and Scandura (1973) developed tests under
the assumption that the subject performs a well-defined, algorithmic treat-
ment of tasks to be solved.

Subsection 1.4.4 provides examples of families of subsets that are closed
under intersection. In a sense which will be made precise in Definition 2.2.2,
these families are dual to knowledge spaces. There is a vast mathematical
literature concerned with the general study of such families, referred to as
‘closure spaces’, ‘abstract convexities’, and a few other technical terms.

More detailed comments on relationships of our work with that of others
can be found in the sources sections at the end of each chapter.

Problems

The first few problems below cannot be solved rigorously without using the
formal apparatus—definitions, axioms—introduced in the following chapters.
The reader should rely on the intuitive conception of a learning space devel-
oped in this chapter to analyze the problem and attempt a formalization. We
propose such exercises as a useful preparation for the rest of this volume.

The other problems are meant to help the reader refresh his command
of the concepts and notation recalled in Section 1.6. A reader experiencing
difficulties with such problems should study basic texts such as Suppes (1960)
or Roberts (1979, 1984).

1. For each of the following pairs, check whether it forms (i) a knowledge
structure; (ii) a knowledge space; (iii) a learning space.

a)
(
{a, b, c, d},

{
{a}, {a, b}, {a, b, c},

{
a, b, c, d}

})
;

b)
(
{a, b, c, d},

{
∅, {a}, {a, b}, {a, b, c}, {a, b, c, d}

})
;

c)
(
{a, b, c, d},

{
∅, {a}, {b}, {a, b}, {a, b, c}, {a, b, c, d}

})
;

d)
(
{a, b, c, d},

{
∅, {a}, {c}, {a, b}, {c, d}, {a, b, c}, {b, c, d}, {a, b, c, d}

})
;

e)
(
{a, b, c, d},

{
∅, {a}, {c}, {a, b}, {a, c}, {c, d}, {a, b, c}, {b, c, d},

{a, b, c, d}
})

;

f)
(
{a, b, c, d},

{
∅, {a}, {c}, {a, b}, {c, d}, {a, b, c}, {a, c, d}, {b, c, d},

{a, b, c, d}
})

.
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2. For each of the following pairs, check whether it forms: (i) a knowledge
structure; (ii) a knowledge space; (iii) a learning space. Let n and k be two
natural numbers, with 0 ≤ k ≤ n, and let Q be a set of size n. Consider
the various possibilities for the respective values of k and n.
a)
(
Q,
{
∅, Q

})
;

b)
(
Q,
{
K ∈ 2Q |K| ≤ k

}
∪
{
Q
})

;

c)
(
Q,
{
K ∈ 2Q |K| ≥ k

}
∪
{
∅
})

;

d)
(
Q,
{
K ∈ 2Q |K| is even

}
∪
{
Q
})

.

3. By the learning smoothness axiom of learning spaces (cf. 1.1.4) if two
states K and L satisfy K ⊂ L, then the number of states between them
is finite. Considering this observation, can a learning space be infinite?

4. Are there knowledge spaces that are not learning spaces? If you believe
so, provide a counterexample.

5. Suppose that each of the states in a knowledge structure K is specified
by its fringes (meaning: no other state in K has the same fringes). Is K

necessarily a learning space, a knowledge space? Justify your response
by formal arguments or counterexamples. (If needed, go to Doignon and
Falmagne, 1997, for clarification, or see 4.1.8 in this book.)

6. (Continuation.) Can you guess the defining property guaranteeing that
the states of a knowledge structure are uniquely specified by their fringes?
(Otherwise, see 4.1.8).

7. Verify that the symmetric difference |X 4 Y | distance between finite sets
X and Y satisfies Conditions (1), (2) and (3) of Definition 1.6.12.

8. Prove that, if R, S, T and M are relations, then the two following hold:

S ⊆M =⇒ RST ⊆ RMT (1.3)

R(S ∪ T ) ⊆ RS ∪RT. (1.4)

9. Using the implication (1.3), give a short proof of the fact that the relative
product of two transitive relations is transitive.

10. Prove that the collection P of all the partial orders on a given finite set
is closed under intersection: that is, if P and Q are in P, then so is P∩Q.

11. Spell out the relationship between (reflexive) partial orders and irreflexive
partial orders.

12. Prove that a partial order can have at most one maximum element. Pro-
vide an example in which neither maximum nor minimum elements exist.

13. Let P be a strict partial order on a finite set. Suppose that H is a relation
whose transitive closure t(H) is equal to P. Verify that we have then

H ⊇ P̆, with P̆ the covering relation of P. (So, the phrase ‘the Hasse
diagram of (X,P) is the smallest relation having its transitive closure
equal to P’ makes sense in 1.6.8.)
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14. Let P̆ be the Hasse diagram of a partial order P. Is it true that P̆ is
countable if and only if P is countable? Prove your answer.

15. When is the Hasse diagram of a nonempty partial order empty? Can we
have an infinite partial order with a nonempty Hasse diagram? What if
the partial order is uncountable?

16. Suppose that d(P̆, Q̆) = n for some partial orders P and Q on a same finite
set Q, where d is the symmetric difference distance defined by (1.2). Is it
true that there exists a sequence of partial orders on Q, say P = P0, P1,
. . . , Pn = Q such that d(P̆j−1, P̆j) = 1 for j = 1, . . . , n. Prove or give a
counterexample. (In other terms, is the collection of all Hasse diagrams
on Q a well-graded family in the sense of 1.1.7?)





2

Knowledge Structures and Learning Spaces

Suppose that some complex system is assessed by an expert, who checks for
the presence or absence of some revealing features. Ultimately, the state of the
system is described by the subset of features, from a possibly large set, which
are detected by the expert. This concept is very general, and becomes pow-
erful only on the background of specific assumptions, in the context of some
applications. We begin with the combinatoric underpinnings of the theory
formalizing this idea.

2.1 Fundamental Concepts

2.1.1 Example. (Knowledge structures in education.) A teacher is examin-
ing a student to determine, for instance, which mathematics courses would
be appropriate at this stage of the student’s career, or whether the student
should be allowed to graduate. The teacher will ask one question, then an-
other, chosen as a function of the student’s response to the first one. After a
few questions, a picture of the student’s knowledge state will emerge, which
will become increasingly more precise in the course of the examination. By
‘knowledge state’ we mean here the set of all problems that the student is
capable of solving in ideal conditions1. The next few definitions provides a
rigorous framework.

2.1.2 Definition. A knowledge structure is a pair (Q,K) in which Q is a
nonempty set, and K is a family of subsets of Q, containing at least Q and
the empty set ∅. The set Q is called the domain of the knowledge structure.
Its elements are referred to as questions or items and the subsets in the fam-
ily K are labeled (knowledge) states. Occasionally, we shall say that K is a
knowledge structure on a set Q to mean that (Q,K) is a knowledge structure.
The specification of the domain can be omitted without ambiguity since we
have ∪K = Q.

1 We assume, for the time being, that there are no careless errors or lucky guesses.
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2.1.3 Example. Consider the domain U = {a, b, c, d, e, f} equipped with the
knowledge structure

H =
{
∅, {d}, {a, c}, {e, f}, {a, b, c}, {a, c, d}, {d, e, f},

{a, b, c, d}, {a, c, e, f}, {a, c, d, e, f}, U
}
. (2.1)

As illustrated by this example, we do not assume that all subsets of the
domain are states. The knowledge structure H contains eleven states out of
sixty-four possible subsets of U .

2.1.4 Definition. Let F be a family of sets. We denote by Fq the collection
of all sets in F containing q. In the knowledge structure H of Example 2.1.3,
we have, for instance

Ha =
{
{a, c}, {a, b, c}, {a, c, d}, {a, b, c, d}, {a, c, e, f}, {a, c, d, e, f}, U

}
,

He =
{
{e, f}, {d, e, f}, {a, c, e, f}, {a, c, d, e, f}, U

}
.

Items a and c carry the same information relative to H in the sense that they
are contained in the same states: any state containing a also contains c, and
vice versa. In other terms, we have Ha = Hc. From a practical viewpoint, any
individual whose state contains item a has necessarily mastered item c, and
vice versa. Thus, in testing the acquired knowledge of a subject, only one of
these two questions must be asked. Similarly, we also have He = Hf .

2.1.5 Definition. In a knowledge structure (Q,K), the set of all the items
contained in the same states as item q is denoted by q∗ and is called a notion;
we thus have

q∗ = {r ∈ Q Kq = Kr}.
The collection Q∗ of all notions is a partition of the set Q of items. When two
items belong to the same notion, we shall sometimes say that they are equally
informative. In such a case, the two items form a pair in the equivalence
relation on Q associated to the partition Q∗.

In Example 2.1.3, we have the four notions

a∗ = {a, c}, b∗ = {b}, d∗ = {d}, e∗ = {e, f},

forming the partition U∗ =
{
{a, c}, {b}, {d}, {e, f}

}
.

A knowledge structure in which each notion contains a single item is called
discriminative. A discriminative knowledge structure can always be manufac-
tured from any knowledge structure (Q,K) by forming the notions, and con-
structing the knowledge structure K∗ induced by K on Q∗ via the definitions

K∗ = {q∗ q ∈ K} (K ∈ K)

K∗ = {K∗ K ∈ K}.

Note that as ∅, Q ∈ K and ∅∗ = ∅, we have ∅, Q∗ ∈ K∗.
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The knowledge structure (Q∗,K∗) is called the discriminative reduction of
(Q,K). Since this construction is straightforward, we shall often simplify mat-
ters and suppose that a particular knowledge structure under consideration is
discriminative.

2.1.6 Example. We construct the discriminative reduction of the knowledge
structure (U,H) of Example 2.1.3 by setting

a∗ = {a, c}, b∗ = {b}, d∗ = {d}, e∗ = {e, f};
U∗ = {a∗, b∗, d∗, e∗};

H∗ =
{
∅, {d∗}, {a∗}, {e∗}, {a∗, b∗}, {a∗, d∗}, {d∗, e∗},

{a∗, b∗, d∗}, {a∗, e∗}, {a∗, d∗, e∗}, U∗
}
.

Thus, (U∗,H∗) is formed by aggregating equally informative items from U .
The graph of the discriminative reduction H∗ is displayed in Figure 2.1. (The
graph of a knowledge structure was introduced in 1.1.3.)

e*

a*

d*

a*, b*, d*

d*, e*

a*, b*

a*, e*

a*, d*

a*, d*, e* U*

Figure 2.1. The discriminative reduction of the knowledge structure H of Eq. (2.1).

2.1.7 Definition. A knowledge structure (Q,K) is called finite (respectively
essentially finite), if Q (respectively K) is finite. A similar definition holds for
countable (respectively essentially countable) knowledge structures.

Typically, knowledge structures encountered in education are essentially
finite. They may not be finite however: at least conceptually, some notions
may contain a potentially infinite number of equally informative questions.
Problems 3 and 4 require the reader to show that any knowledge structure
K has the same cardinality as its discriminative reduction K∗, and that the
knowledge structure (Q,K) is essentially finite if and only if Q∗ is finite.

As suggested by these first few definitions, our choice of terminology is
primarily guided by Example 2.1.1, which has also motivated many of our
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theoretical developments. However, as illustrated by Examples 1.4.1 to 1.4.4
our results are potentially applicable to very different fields.

An important special case of a knowledge structure arises when the family
of states is a learning space.

2.2 Axioms for Learning Spaces

2.2.1 Definition. A knowledge structure (Q,K) is called a learning space if
it satisfies the two following conditions.

[L1] Learning smoothness. For any two states K, L such that K ⊂ L,
there exists a finite chain of states

K = K0 ⊂ K1 ⊂ · · · ⊂ Kp = L (2.2)

such that |Ki \Ki−1| = 1 for 1 ≤ i ≤ p and so |L \K| = p.

Intuitively, in pedagogical language: If the state K of the learner is included
in some other state L then the learner can reach state L by mastering the
missing items one at a time.

In the sequel, we refer to a chain (2.2) as an L1–chain from K to L.

[L2] Learning consistency. If K, L are two states satisfying K ⊂ L
and q is an item such that K + {q} ∈ K, then L ∪ {q} ∈ K.

In short: Knowing more does not prevent learning something new.

Notice that any learning space is finite. Indeed, Condition [L1] applied to the
two states ∅ and Q implies that Q is a finite set.

From the pedagogical standpoint of Example 2.1.1, both of these axioms
seem sensible. This mathematical object occurs in another field, however. In
the combinatoric literature, a learning space is sometimes referred to as an
‘antimatroid’, which is then typically defined by different (but equivalent)
axioms (e.g. Korte, Lovász, and Schrader, 1991). As we shall see in Defini-
tion 2.2.2, this structure is a family of sets closed under union and satisfying a
particular ‘accessibility’ condition. Originally, however, the label ‘antimatroid’
was attached to their dual structures, namely, to families closed under inter-
section (see in particular Edelman and Jamison, 1985; Welsh, 1995; Björner,
Las Vergnas, Sturmfels, White, and Ziegler, 1999). As the dates of the last
two references suggest, this dual usage is still current. For an overview of the
origins and the many avatars of the ‘antimatroid’ concept, we refer the reader
to Monjardet (1985).

Our next definition formalizes various properties ensuing from Axioms
[L1] and [L2]. We have encountered two of them earlier, namely, closure under
union and wellgradedness (cf. 1.1.6 and 1.1.7). Another one is that of a ‘(union-
closed) antimatroid.’ Theorem 2.2.4 spells out the relationships among all
these concepts.
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2.2.2 Definition. A family K is closed under union when ∪F ∈ K whenever
F ⊆ K. This implies ∅ ∈ K, because by convention the union of the empty
subfamily is the empty set. When a family is closed under union, we will
sometimes say for short that it is union-closed, or even ∪-closed. When the
family K of a knowledge structure (Q,K) is union-closed, we call (Q,K) a
knowledge space; we may also say equivalently, that K is a knowledge space.

On occasion, we also use the phrase closed under finite union. When ap-
plied to a family K, it means that for any K and L in K, the set K ∪L is also
in K. Note that, in such a case, the empty set does not necessarily belong to
the family K.

The dual of a knowledge structure K on Q is the knowledge structure K

containing all the complements of the states of K, that is, the family

K = {K ∈ 2Q Q \K ∈ K}.

Thus, K and K have the same domain. It is clear that if K is a knowledge
space, then K is an intersection-closed knowledge structure, that is, ∩F ∈ K

whenever F ⊆ K, with ∅, Q ∈ K.
We recall (from 1.6.12) that the canonical distance d between two finite

sets A and B is defined by counting the number of elements in their symmetric
difference A4B:

d(A,B) = |A4B| = |(A \B) ∪ (B \A)|. (2.3)

A family of sets F is well-graded or a wg-family if, for any two distinct sets
K,L ∈ F, there is a finite sequence of states K = K0,K1, . . . ,Kp = L such
that d(Ki−1,Ki) = 1 for 1 ≤ i ≤ p and moreover p = d(K,L). We call the
sequence of sets (Ki) a tight path from K to L. It is clear that a well-graded
knowledge structure is finite and discriminative (Problem 2).

A family K of subsets of a finite set Q = ∪K is an antimatroid if it is
closed under union and satisfies the following axiom:

[MA] If K is a nonempty subset of Q belonging to the family K, then there
is some q in such that K \ {q} ∈ K.

We call the sets in K states, and we also say then that the pair (Q,K) is an an-
timatroid. It is clear that (Q,K) is then a discriminative knowledge structure.
A family K satisfying Axiom [MA] is said to be accessible or downgradable
(see Doble, Doignon, Falmagne, and Fishburn, 2001, for the latter term).

The following result allows us to trim some proofs.

2.2.3 Lemma. The two following conditions are equivalent for a ∪-closed
family of sets K:

(i) K is well-graded;
(ii) for any two sets K and L such that K ⊂ L, there is a tight path from K

to L.

K
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Proof. It is clear that (i) implies (ii). Suppose that (ii) is true. For any two
distinct sets K and L, there exists a tight path K = K0 ⊂ K1 ⊂ · · · ⊂ Kq =
K ∪ L and another tight path L = L0 ⊂ L1 ⊂ · · · ⊂ Lp = K ∪ L. Reversing
the order of the sets in the latter tight path and redefining Kq+1 = Lp−1,
Kq+2 = Lp−2, . . . , Kq+p = L = L0, we get the tight path K = K0, K1, . . . ,
Kq+p = L, with |K 4 L| = q + p.

When applied to knowledge structures, the wellgradedness property is a
strengthening of [L1]: any L1–chain is a special kind of tight path.

All three of the conditions introduced in Definition 2.2.2—∪-closure, well-
gradedness, and accessibility—hold in any learning space. In fact, we have the
following result.

2.2.4 Theorem. For any knowledge structure (Q,K), the following three con-
ditions are equivalent.

(i) (Q,K) is a learning space.
(ii) (Q,K) is an antimatroid.

(iii) (Q,K) is a well-graded knowledge space.

The equivalence of (i) and (iii) was established by Cosyn and Uzun (2009).
Clearly, under each of the three conditions, the knowledge structure (Q,K) is

discriminative. Note in passing that this result also holds under a substantially
weaker form of Axiom [MA] (cf. Condition (iii) in Theorem 5.4.1)2.

Proof. (i) ⇒ (ii). Suppose that (Q,K) is a learning space. Thus, Q is nec-
essarily finite. Axiom [MA] results immediately from the fact that, for any
state K, there is an L1-chain from ∅ to K. Turning to the ∪-closure, we take
any two states K and L in K and suppose that neither of them is empty or a
subset of the other (otherwise ∪-closure holds trivially). Since ∅ ⊂ L, Axiom
[L1] implies the existence of an L1–chain ∅ ⊂ {q1} ⊂ · · · ⊂ {q1, . . . , qn} = L.

Let j ∈ {1, . . . , n} be the first index with qj /∈ K. If j > 1; we have

{q1, . . . , qj−1} ⊂ K, and {q1, . . . , qj−1}+ {qj} ∈ K. (2.4)

By Axiom [L2] and with qj ∈ L, we get K+{qj} ∈ K with K+{qj} ⊆ K ∪L.
A similar argument applies with ∅ ⊂ K in (2.4) if j = 1. Applying induction
yields K ∪ L ∈ K.

(ii) ⇒ (iii). Only the wellgradedness must be established. We use Lemma
2.2.3. Take any two states K, L with K ⊂ L (with possibly K = ∅). Re-
peated applications of Axiom [MA] to state L gives us a sequence of states
L0 = L,L1, . . . , Lk = ∅ such that qi−1 ∈ Li−1 and Li = Li−1 \ {qi−1} for
i = 1, . . . , k. Let j be the largest index such that qj /∈ K (there must be such
an index since K ⊂ L). We obtain K ⊂ K ∪{qj} = K ∪Lj ⊆ L. Replacing K
with K ∪ {qj} and using induction we see that the condition in Lemma 2.2.3
is satisfied, and so the wellgradedness of (Q,K).

2 We give yet another characterization of learning spaces in Theorem 11.5.3.
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(iii)⇒ (i). Axiom [L1] results from the wellgradedness condition. Suppose
that K ⊂ L for two states K and L and that K + {q} is also a state. By
∪–closure, the set (K + {q}) ∪ L = L ∪ {q} is also a state; so, [L2] holds.

2.2.5 Remarks. The concept of a well-graded knowledge space was inves-
tigated by Falmagne and Doignon (1988b). In the early stage of our work,
knowledge spaces were at the focus of our developments. From a pedagogical
standpoint, they were motivated by the following argument.

Consider the case of two students engaged in extensive interactions for
a long time, and suppose that their initial knowledge states with respect to
a particular body of information are K and L. At some point, one of these
students could conceivably have acquired the joint knowledge of both. The
knowledge state of this student would then be K ∪ L. Obviously, there is no
certainty that this will happen. However, requiring the existence of a state in
the structure to cover this case may be reasonable.

Some may find such an argument only moderately convincing. As for the
wellgradedness condition, its a priori justification is far from obvious. Yet,
the two conditions are equivalent to [L1]-[L2]. In fact, both the ∪-closed and
wellgradedness conditions do play critical roles, but their pedagogical imports
are subtle. We will see in Chapter 3 that the ∪-closed condition makes it
possible to summarize any knowledge space by its ‘base’3, which is a typically
much smaller subfamily of the knowledge space. In view of the very large size
of the knowledge structures encountered in practice, this feature is precious
because it facilitates computation. As for the wellgradedness condition, it
guarantees that any state can be faithfully represented by its two ‘fringes’
which are also comparatively much smaller sets4 (cf. Theorem 4.1.7).

We devote Chapters 3 and 4 to a detailed discussion of knowledge spaces
and well-graded knowledge structures, respectively.

As a preparation for our next section, a weakening of some of the concepts
of Theorem 2.2.4 is in order.

2.2.6 Definition. A family F of subsets of a nonempty set Q is a partial
knowledge structure if it contains the set Q = ∪F. The discriminative concept
introduced in Definition 2.1.5 also applies in the partial case. We do not
assume that |F| ≥ 2. We also call the sets in F states. A partial knowledge
structure F is a partial learning space if it satisfies Axioms [L1] and [L2].
A family F is partially ∪-closed if for any nonempty subfamily G of F, we
have ∪G ∈ F. (Contrary to the ∪-closure condition, partial ∪-closure does not
imply that the empty set belongs to the family.) A partial knowledge space F

is a partial knowledge structure that is partially ∪-closed.

3 This concept is defined and investigated in Section 3.4.
4 In practical applications of the concept of a learning space, the fringes

summarize—without loss of information—a knowledge state in a way that may
be more meaningful, for the teacher and the student, than a full listing of all the
items mastered.
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The equivalence (i) ⇔ (iii) in Theorem 2.2.4 ceases to hold in the case of
partial structures. Indeed, we have the following result.

2.2.7 Lemma. Any well-graded partially ∪-closed family is a partial learning
space. The converse implication is false.

Proof. Let K be a well-graded partially ∪-closed family. Axiom [L1] is a
special case of the wellgradedness condition. If K ⊂ L for two sets K and L in
K and K+{q} is in K, then the set (K+{q})∪L = L∪{q} is in K by partial
∪–closure, and so [L2] holds. The example below disproves the converse.

2.2.8 Example. The family of sets

L = {{a}, {c}, {a, b},{b, c}, {a, b, c}}

is a partial learning space. It is the union of the two chains

{a} ⊂ {a, b} ⊂ {a, b, c}, {c} ⊂ {b, c} ⊂ {a, b, c}

with ∪L as the only common state. However, L is neither ∪-closed nor well-
graded. The knowledge structure L′ = {∅} ∪L does not satisfy [L1] since we
have ∅ ⊂ {a} with ∅ + {c} as a state of L′, but {a} ∪ {c} is not a state.

2.3 The nondiscriminative case*

The axiomatics given in the previous section for learning spaces and well-
graded knowledge spaces imply that their models are always discriminative
knowledge structures (in the sense of Definition 2.1.5). It is straightforward to
adapt the axioms so as to cover nondiscriminative structures. We state here
the modified axioms and review some of their consequences, without going
into much detail.

2.3.1 Definition. In the case of structures that may not be discriminative,
we must modify the concept of distance between two states in the structure.
Rather than counting the number of items by which two states differ, we count
here the number of notions. Remember from 2.1.5 that q∗ denotes the notion
containing the item q, and that for any state K, we set K∗ = {q∗ q ∈ K}.

Suppose that (Q,K) is an essentially finite knowledge structure. Let K
and L be two states in (Q,K). The essential distance between K and L is
defined by

e(K,L) = |K∗ 4 L∗|.
We can verify that the function e : K×K→ R is a distance in the usual sense
(cf. 1.6.12).
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2.3.2 Definition. A knowledge structure (Q,K) is called a quasi learning
space if it satisfies the two following conditions.

[L1∗] Quasi learning smoothness. For any two states K, L such that
K ⊂ L there exists a chain of 1 + p states

K = K0 ⊂ K1 ⊂ · · · ⊂ Kp = L (2.5)

with p = e(K,L) and Ki = Ki−1 + {q∗i } for some qi ∈ Q, 1 ≤ i ≤ p.

In the sequel, we refer to a chain (2.2) as a quasi L1–chain from K to L.

[L2∗] Quasi learning consistency. If K, L are two states satisfying
K ⊂ L and q is an item such that K + {q∗} ∈ K, then L ∪ {q∗} ∈ K.

Our next definition introduces a nondiscriminative variant of the wellgrad-
edness condition.

2.3.3 Definition. A family of sets F is quasi well-graded or a qwg-family if,
for any two distinct states K,L ∈ F, there exists a finite sequence of states
K = K0, K1, . . . , Kp = L such that e(Ki−1,Ki) = 1 for 1 ≤ i ≤ p and
moreover p = e(K,L). We call the sequence of sets (Ki) a quasi tight path
from K to L. A quasi well-graded knowledge structure is essentially finite
(Problem 16).

We leave to the reader the verification of the following result, which extends
the equivalence (i) ⇔ (iii) in Theorem 2.2.4 (see Problem 9) .

2.3.4 Theorem. For any knowledge structure (Q,K), the following two con-
ditions are equivalent.

(i) (Q,K) is a quasi learning space.
(ii) (Q,K) is a quasi well-graded knowledge space.

We will not pursue here the extension of the theory to structures which
may not be discriminative. In any event, discriminative reduction is always at
hand to generate a discriminative structure from a nondiscriminative one.

2.4 Projections

As we argued before, an empirical learning space can be very large, number-
ing millions of states. The concept of a ‘projection’ discussed in this section
provides a way of parsing such a large structure into meaningful components.
Moreover, when the learning space concerns a scholarly curriculum such as
high school algebra, a projection may provide a convenient instrument for the
programming of a placement test.
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The key idea is that if K is a learning space on a domain Q, then any
proper subset Q′ of Q defines a learning space K|Q′ on Q′ which is in some
sense consonant with K. We call K|Q′ a ‘projection’ of K on Q′, a terminol-
ogy consistent with that used for media by Cavagnaro (2008) and Eppstein,
Falmagne, and Ovchinnikov (2008). (We discuss the relationship between me-
dia and learning spaces in Chapter 10.) Moreover, this construction defines a
partition of K such that each equivalence class is a subfamily of K satisfying
two key properties of a learning space, namely wellgradedness and ∪-closure.
Actually, it is possible to choose Q′ so that each of these classes is essentially
(via a trivial transformation) either a learning space consistent with K or the
singleton {∅}. These results, which are mostly due to Falmagne (2008), are
presented in this section.

2.4.1 Definition. Suppose that (Q,K) is a partial knowledge structure with
|Q| ≥ 2, and let Q′ be any proper nonempty subset of Q. Define a relation
∼Q′ on K by

K ∼Q′ L ⇐⇒ K ∩Q′ = L ∩Q′ (2.6)

⇐⇒ K 4 L ⊆ Q \Q′. (2.7)

Thus, ∼Q′ is an equivalence relation on K. When the context specifies the
subset Q′, we sometimes use the shorthand ∼ for ∼Q′ in the sequel. The
equivalence between the right hand sides of (2.6) and (2.7) is easily verified
(cf. Problem 11). We denote by [K] the equivalence class of ∼ containing K,
and by K∼ = {[K] K ∈ K} the partition of K induced by ∼. We may also
say for short that such a partition is induced by the set Q′. In the sequel, we
always assume that |Q| ≥ 2, so that |Q′| ≥ 1.

2.4.2 Definition. Let (Q,K) be a partial knowledge structure and take any
nonempty proper subset Q′ of Q. The family

K|Q′ = {W ⊂ Q′ W = K ∩Q′ for some K ∈ K} (2.8)

is called the projection of K on Q′. We thus have K|Q′ ⊆ 2Q
′
. Depending

on the context, we may also refer to K|Q′ as a substructure of K. Each set
W = K∩Q′ with K ∈ K is called the trace of the state K on Q′. Example 2.4.3
shows that the sets in K|Q′ may not be states of K. For any state K in K and
with [K] as in Definition 2.4.1, we define the family

K[K] = {M ⊆ Q M = L \ ∩[K] for some L ∼ K}. (2.9)

(If ∅ ∈ K, we thus have K[∅] = [∅].) The family K[K] is called a Q′-child, or
simply a child of K when the set Q′ is made clear by the context. As shown
by our next example, a child of K may take the form of the singleton {∅} and
we may have K[K] = K[L] even when K 6∼ L. The set {∅} is called the trivial
child. We refer to K as the parent structure.
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2.4.3 Example. Consider the learning space

F = {∅,{b}, {c}, {a, b}, {a, c}, {b, c}, {b, d}, {a, b, c}, {a, b, d}, {b, c, d}, {b, c, e},
{b, d, f}, {a, b, c, d}, {a, b, c, e}, {b, c, d, e}, {b, c, d, f}, {b, c, e, f},
{a, b, d, f}, {a, b, c, d, e}, {a, b, c, d, f}, {a, b, c, e, f}, {b, c, d, e, f},
{a, b, c, d, e, f}, {a, b, c, d, e, f, g}}. (2.10)

The domain of this learning space is thus the set Q = {a, b, c, d, e, f}. The
inclusion graph of F is pictured by the grey parts of the diagram of Figure 2.2.

Figure 2.2. In grey, the inclusion graph of the learning space F of Equation (2.10).
Each oval surrounds an equivalence class [K] (in grey) and a particular state (in
black) of the projection F|{a,d,f} of F on Q′ = {a, d, f}, signaling a 1-1 correspon-
dence F∼ → F|{a,d,f} (cf. Lemma 2.4.5(ii)). Via the defining equation (2.9), the
eight equivalence classes produce five children of F, which are represented in the five
black rectangles at the edge of the figure. One of these children is the singleton set
{∅} (thus, the trivial child), and the others are learning spaces or partial learning
spaces (cf. the projection Theorems 2.4.8 and 2.4.12).
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The sets marked in black in the eight ovals of the figure represent the states
of the projection F|{a,d,f} of F on the set {a, d, f}. It is clear that F|{a,d,f} is
a learning space5. Each of these ovals also surrounds the inclusion subgraph
corresponding to an equivalence class of the partition F∼. This is consistent
with Lemma 2.4.5(ii) below, according to which there is a 1-1 correspondence
between F∼ and F|{a,d,f}. In this example, the ‘learning space’ property is
transmitted to the children: not only is F|{a,d,f} a learning space, but also
any child of F is a learning space or a partial learning space. Indeed, we have

F[{b,c,e}] = {∅, {b}, {c}, {b, c}, {b, c, e}},
F[{a,b,c,e}] = {{b}, {c}, {b, c}, {b, c, e}},

F[{b,c,d,e}] = F[{b,c,d,e,f}] = F[{a,b,c,d,e}] = {∅, {c}, {c, e}},
F[{a,b,c,d,e,f,g}] = {∅, {c}, {c, e}, {c, e, g}}

F[{b,c,e,f}] = F[{a,b,c,e,f}] = {∅}.

These five children are represented in the five black rectangles in Figure 2.2.
Theorem 2.4.8 shows that wellgradedness is inherited by the children of

a learning space. These children are also partially ∪-closed. In the particular
case of this example, just adding the set ∅ to the child not containing it
already, that is, to the child F[{a,b,c,e}], would result in all the children being
learning spaces or trivial. This is not generally true. The situation is clarified
by Theorem 2.4.12.

2.4.4 Remark. The concept of projection for learning spaces is closely re-
lated to the concept bearing the same name for media introduced by Cav-
agnaro (2008). The Projection Theorems 2.4.8 and 2.4.12, the main results of
this section, could be derived via similar results concerning the projections of
media (cf. Theorem 2.11.6 in Eppstein et al., 2008). This would be a detour,
however. The route followed here is direct.

In the next two lemmas, we derive a few consequences of Definition 2.4.2.

2.4.5 Lemma. The following two statements are true for any partial knowl-
edge structure (Q,K).

(i) The projection K|Q′ , with Q′ ⊂ Q, is a partial knowledge structure. If
(Q,K) is a knowledge structure, then so is K|Q′ .

(ii) The function h : [K] 7→ K∩Q′ is a well defined bijection of K∼ onto K|Q′ .

Proof. (i) Both statements follow from ∅ ∩Q′ = ∅ and Q ∩Q′ = Q′.

(ii) That h is a well defined function is due to (2.6). Clearly, h(K∼) = K|Q′

by the definitions of h and K|Q′ . Suppose that, for some [K], [L] ∈ K∼, we
have h([K]) = K ∩ Q′ = h([L]) = L ∩ Q′ = X. Whether or not X = ∅, this
entails K ∼ L and so [K] = [L].

5 This property holds in general. Notice that we have here the special case in which
F|{a,d,f} is the power set of {a, d, f}. However, it is not generally true that for

any learning space (Q,K) and Q′ ⊂ Q, we have K|Q′ = 2Q′ .
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2.4.6 Lemma. Let K be any ∪-closed family, with Q = ∪K not necessarily
in K, and take any Q′ ⊂ Q. The following three statements are then true.

(i) K ∼Q′ ∪[K] for any K ∈ K;
(ii) K|Q′ is a ∪-closed family. If K is a knowledge space, so is K|Q′ .

(iii) The children of K are also partially ∪-closed.

For knowledge spaces, Lemma 2.4.6(ii) was obtained by Doignon and Fal-
magne (1999, Theorem 1.16 on p. 25, in which the term ‘substructure is used
instead of ‘projection’).

Proof. (i) As ∪[K] is the union of states of K, we get ∪[K] ∈ K. We must
have K ∩ Q′ = (∪[K]) ∩ Q′ because K ∩ Q′ = L ∩ Q′ for all L ∈ [K]; so
K ∼ ∪[K].

(ii) Any subfamily H′ ⊆ K|Q′ is associated to the family

H = {H ∈ K H ′ = H ∩Q′ for some H ′ ∈ H′}.

As K is ∪-closed, we have ∪H ∈ K, yielding Q′ ∩ (∪H) = ∪H′ ∈ K|Q′ . If K
is a knowledge space, then Q ∈ K, which implies Q′ ∈ K|Q′ . Thus K|Q′ is a
knowledge space.

(iii) Take K ∈ K arbitrarily. We must show that K[K] is ∪-closed. For any
H ⊆ K[K] we define the associated family

H† = {H† ∈ K H† ∼ K, H† \ ∩[K] ∈ H}.

So, H† ⊆ [K], which gives L ∩ Q′ = K ∩ Q′ for any L ∈ H†. Since K is
∪-closed, we have ∪H† ∈ K. We thus get (∪H†)∩Q′ = K∩Q′ and ∪H† ∼ K.

The ∪-closure of K[K] follows from the string of equalities

∪H = ∪H†∈H†(H† \ ∩[K]) = ∪H†∈H†(H† ∩ (∩[K]) = (∪H†∈H†H†) \ ∩[K]

which gives ∪H ∈ K[K] because K ∼ ∪H† ∈ K.
Example 2.4.7 shows that the reverse implications in (ii) and (iii) do not

hold.

2.4.7 Example. Consider the projection of the knowledge structure

G =
{
∅, {a}, {b}, {c}, {a, b}, {a, c}, {a, b, c}

}
,

on the subset {c}. We thus have the two equivalence classes [{a, b}] and
[{a, b, c}], with the projection G|{c} = {∅, {c}}. The two {c}-children are

G[∅] =
{
∅, {a}, {b}, {a, b}

}
and G[{c}] =

{
∅, {b}

}
. Both G[∅] and G[{c}] are

well-graded and ∪-closed, and so is G|{c}. However, G is not ∪-closed since
{b, c} is not a state.

We state the first of our two projection theorems.
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2.4.8 Theorem. Let (Q,K) be a learning space, with |Q| = | ∪K| ≥ 2. The
following two properties hold for any proper nonempty subset Q′ of Q.

(i) The projection K|Q′ of K on Q′ is a learning space.
(ii) The children of K are well-graded and partially ∪-closed families.

Note that we may have K[K] = {∅} in (ii) (cf. Example 2.4.3).

Proof. (i) Since is a learning space, K|Q′ is a knowledge structure by
Lemma 2.4.5(i). We prove that Axiom [L1] holds for K|Q′ . Assume K,

L ∈ K|Q′ with K ⊂ L. Then, there exist K̃ and L̃ in K such that K = K̃ ∩Q′
and L = L̃ ∩ Q′. As K is a learning space, there is a L1–chain from K̃ to
K̃ ∪ L̃, say K̃ = K0, K1, . . . , Kq = K̃ ∪ L̃. Then K = K0 ∩Q′, K1 ∩Q′, . . . ,
Kq ∩ Q′ = L yields a L1–chain from K to L in K[K] after deleting from the
sequence any set identical to a previous set. Axiom [L2] also holds for K|Q′ .
Indeed, take K, L ∈ K|Q′ and q ∈ Q′ with K ⊂ L and K ∪{q} ∈ K|Q′ . There

exist K̃, L̃, M in K such that K = K̃ ∩Q′, L = L̃∩Q′ and K ∪{q} = M ∩Q′.
So, we have L ∪ {q} = (L̃ ∪M) ∩Q′, thus L ∪ {q} ∈ K|Q′ .

(ii) Take any child K[K] of K. By Lemma 2.4.6(iii), K[K] is a partially
∪-closed family. Axiom [L1] and the argument in the proof of Lemma 2.2.3
imply that [K] is well-graded. The wellgradeness of K[K] follows easily.

2.4.9 Remark. In Example 2.4.3, we had a situation in which the non trivial
children of a learning space were either themselves learning spaces, or would
become so by the addition of the set {∅}. This happens if and only if the
subset Q′ of the domain defining the projection satisfies the condition spelled
out in the next definition.

2.4.10 Example. Take the learning space

K =
{
∅, {a}, {d}, {a, b}, {a, d}, {c, d},

{a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}, {a, b, c, d}
}
,

with domain Q = {a, b, c, d}. We set Q′ = {c} and K = {c, d}. Then

[K] =
{
{c, d}, {a, b, c}, {a, c, d}, {b, c, d}, {a, b, c, d}

}
and, as ∩[K] = {c},

K[K] =
{
{d}, {a, b}, {a, d}, {b, d}, {a, b, d}

}
.

Clearly, the child K[K] is not a learning space and even K[K] ∪{∅} is not: for
instance, there is no tight path from ∅ to {a, b}. The reason lies in a feature
of [K]: the element {a, b, c} is a minimal element of [K] covering ∩[K] while
at the same time {a, b, c} \ ∩[K] contains more than one element.
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2.4.11 Definition. Suppose that (Q,K) is a partial knowledge structure,
with |Q| ≥ 2. A subset Q′ ⊂ Q is yielding if for any state L of K that is
minimal for inclusion in some equivalence class [K], we have |L \ ∩[K]| ≤ 1.
We recall that [K] is the equivalence class containing K in the partition of K
induced by Q′ (cf. Definition 2.4.1). For any non trivial child K[K] of K, we

call K+
[K] = K[K] ∪ {∅} a plus child of K.

2.4.12 Theorem. Suppose that (Q,K) is a learning space with |Q| ≥ 2, and
let Q′ be a proper nonempty subset of Q. The two following conditions are
then equivalent.

(i) The set Q′ is yielding.
(ii) All the plus children of K are learning spaces6.

Problem 13 asks the reader to investigate whether any learning space al-
ways has at least one non trivial child.

Proof. (i) ⇒ (ii). By Lemma 2.4.6(iii), we know that any non trivial child
K[K] is ∪-closed. This implies that the associated plus child K+

[K] is a knowl-

edge space. We use Lemma 2.2.3 to prove that such a plus child is also well-
graded. Suppose that L and M are states of K+

[K], with ∅ ⊆ L ⊂M and, for

some positive integer n, d(L,M) = n. We have two cases.

Case 1. Suppose that L 6= ∅. Then both L and M are in K[K]. As K[K]

is well-graded by Theorem 2.4.8(ii), there exists a tight path

L = L0 ⊂ L1 ⊂ · · · ⊂ Ln = M.

Since ∅ ⊂ L0, this tight path lies entirely in the plus child K+
[K].

Case 2. Suppose now that L = ∅. In view of what we just proved, we
only have to show that, for any nonempty M ∈ K+

[K], there is a singleton set

{q} ∈ K+
[K] with q ∈ M . By definition of K+

[K], we have M = M† \ ∩[K] for

some M† ∈ [K]. Take a minimal state N in [K] such that N ⊆ M† and so
N \ ∩[K] ⊆M . Since Q′ is yielding, we get |N \ ∩[K]| ≤ 1. If |N \ ∩[K]| = 1,
then N \ ∩[K] = {q} ⊆ M for some q ∈ Q with {q} ∈ K+

[K]. Suppose that

|N \ ∩[K]| = 0. Thus N \ ∩[K] = ∅ and N must be the only minimal set in
[K], which implies that ∩[K] = N . By the wellgradedness of K, there exists
some q ∈ M† such that M† ⊇ N + {q} ∈ K. We have in fact N + {q} ∈ [K]
since q ∈M \N implies N ∩Q′ = (N + {q}) ∩Q′. We thus get

(N + {q}) \ ∩[K] = (N + {q}) \N = {q} ⊆M with {q} ∈ K+
[K].

We have proved that in both cases, the tight path from L to M exists. The
plus child K+

[K] is thus well-graded. Applying Theorem 2.2.4, we conclude that

K+
[K] is a learning space.

6 Note that we may have ∅ ∈ K[K], in which case K+
[K] = K[K] (cf. Example 2.4.3).
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(ii) ⇒ (i). Let L be a minimal element in the equivalence class [K], where
K ∈ K. Then ∩[K] ⊆ L. If equality holds, we have |L\∩[K]| = 0. If ∩[K] ⊂ L
holds, then ∅ and L \ ∩[K] are distinct elements in the plus child K+

[K]. By

the wellgradedness of K+
[K], there is a tight path from ∅ to L \ ∩[K] in K+

[K].

Because L is minimal in [K] and distinct from ∩[K], we see that L \ ∩[K]
must be a singleton. Hence |L \ ∩[K]| = 1.

2.4.13 Remark. The theory of learning spaces provides the combinatoric
foundation for various knowledge assessment algorithms. As we discussed
in 1.1.12, the goal of an assessment algorithm is to uncover the knowledge
state of a student by a sequence of well chosen questions. Two quite different
classes of stochastic assessment algorithms are described in Chapters 13 and
14. However, empirically constructed learning spaces are typically so large,
with knowledge states numbering millions, that a straightforward application
of an assessment algorithm is not always feasible. In such cases, the result
of this section may be useful. For example, they pave the way to a two-step
assessment in a learning space (Q,K) which is serviceable in those cases in
which K is very large. The first step uses a projection K|Q′ on a suitable—in
particular, yielding—subset Q′ ⊂ Q. This step ends up with a state W ⊆ Q′

of the projection K|Q′ , with W = K ∩Q′ for some K ∈ K. The second step is
an assessment on the Q′-child K[K] of K, leading to some state M = L \∩[K]
of K[K], for some state L of K. The state L can then be taken as the final
state obtained for the assessment. If the learning space K is extremely large,
an n-phase assessment along these lines is also feasible in principle.

An objection to this procedure is that it does not feature any mechanism
permitting a correction, during Step 2, of any assessment error made in Step 1.
The state W = K ∩Q′ selected by Step 1 is taken for granted and defines the
child K[K]. The assessment in the space K[K] only amounts to selecting one
among the states that are ∼Q′ equivalent to K. A more flexible procedure is
discussed in Section 13.77.

2.5 Original Sources and Related Works

As indicated in Chapter 1, the theory of knowledge spaces was initiated by
Doignon and Falmagne (1985). Most of the early work was focused on the ax-
iom of closure under union, in the finite case. From a pedagogical standpoint,
there were some weaknesses in this approach. For one thing, the ∪-closure con-
dition may not be convincing for an educator, at least a priori. For another,
the state resulting from an assessment in a knowledge space has no natural,

7 Another approach would rely on having two or more assessments pursued simul-
taneously rather that successively, with possible interplay between them. While
this possibility is intriguing, we do not expand on this idea here.



Problems for Chapter 2 39

economical representation in a style that would be useful to the teacher or
the student.

The wellgradedness condition was introduced by Falmagne and Doignon
(1988b) to palliate the latter defect. Under this condition, a meaningful rep-
resentation of any knowledge state is feasible in the form of the two ‘fringes’
of that state (see Definition 4.1.6). The outer fringe spells out the items that
the student is ready to learn, and the inner fringe contains all those items
signaling the ‘high points’ in a student’s state. However, the resulting concept
of a well-graded knowledge space, although mathematically appropriate, was
still suffering from a lack of an immediate pedagogical justification.

The axioms [L1] and [L2] axioms were later proposed by Falmagne to Eric
Cosyn and Hasan Uzun as offering a more compelling basis for the theory. In a
recent paper, Cosyn and Uzun (2009) proved that for a knowledge structure K,
the conditions [L1] and [L2] were in fact equivalent to the hypothesis that K

is a well-graded knowledge space. This result is recalled as the equivalence
(i) ⇔ (iii) of Theorem 2.2.4.

The concept of a projection was already present in our original monograph
‘Knowledge Spaces’ in the form of a ‘substructure’ of a knowledge structure
(see Doignon and Falmagne, 1999, Theorem 1.16 and Definition 1.17). What
is new8 in Section 2.4, which closely follows Falmagne (2008), is the extension
of the results to learning spaces, and, most importantly, the analysis of a
knowledge structure K into a projection K|Q′ and its satellite components in
the form of the children K[K] defined in 2.4.2. These results expand earlier
work by Cosyn (2002), who also defined a partition of the knowledge structure,
which he called ‘coarsening.’ However, his partition was chosen arbitrarily and
did not arise from an equivalence relation defined by (2.6) via a subset Q′ of
the domain. By contrast, the definition of a projection given by Cavagnaro
(2008) is conceptually quite similar to ours, but applies to media, which are
semigroups of transformations rather than families of sets. As we pointed
out in Remark 2.4.4, a precise connection between media and learning spaces
exists, which will be delineated in Chapter 10.

Problems

1. Construct the discriminative reduction of the knowledge structure

K =
{
∅, {a, c, d}, {b, e, f}, {a, c, d, e, f}, {a, b, c, d, e, f}

}
.

2. Verify that any well-graded knowledge structure is discriminative. Why is
a well-graded family of sets not necessarily discriminative?

8 Besides the name ‘projection’ replacing ‘substructure.’
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3. Do we have |K| = |K∗| for any knowledge structure K? Prove your answer.
(The ‘ ∗ ’ notation is as in Definition 2.1.4.)

4. Show that a knowledge structure (Q,K) is essentially finite if and only if
Q∗ is finite.

5. Construct a drawing representing the knowledge structure H of Exam-
ple 2.1.3 in the style of Figure 2.1 for Example 2.1.6.

6. Consider the following axiom generalizing the closure under union.
[JS] For any subfamily of states F in a knowledge structure (Q,K), there

exists a unique minimal state K ∈ K such that ∪F ⊆ K.
(Under this axiom, K is thus a ‘join semi lattice’ with respect to inclusion.)
Construct a finite example in which this axiom is not satisfied.

7. Is it true that if one set is finite in a well-graded family, then all sets of
that family are finite? Give a proof or a counterexample.

8. Prove that if a knowledge structure (Q,K) is discriminative, then so is its
projection K|Q′ on a subset Q′ ⊂ Q, but that the converse does not hold.

9. Prove Theorem 2.3.4.

10. Consider the following modification of Axiom [L1] for a knowledge struc-
ture (Q,K).

[L1’] If K and L are two states with K ⊂ L 6= Q, then there is a chain
of states K = K0 ⊂ K1 ⊂ · · · ⊂ Kn = L with Ki = Ki−1 + {qi}
for 1 ≤ i ≤ n and |L \K| = n.

Suppose that (Q,K) satisfies [L1’] and [L2]. Could the domain Q be un-
countable? Prove your answer.

11. Let (Q,K) be a knowledge structure and let Q′ be any proper subset of Q.
With the equivalence classes [K] defined as in 2.4.1, prove the following
two statements:

K 4 L ⊆ Q \Q′ ⇐⇒ K ∩Q′ = L ∩Q′ (2.11)

(∩[K]) ∩Q′ = K ∩Q′. (2.12)

12. Describe the components F[{a,b}] and F[∅] in the example of Figure 2.2.

13. Is it true that any learning space has at least one non trivial child, either
(i) for some subset of the domain; or (ii) for a given subset of the domain
(cf. Theorem 2.4.12).

14. Two knowledge structures (Q,L) and (Q†,K†) are isomorphic if there
exists a 1-1 correspondence f : Q → Q† such that for all K ⊆ Q, we
have K ∈ K if and only if f(K) ∈ K†. Prove that (Q,L) is a learning
space (resp. knowledge space) if and only if (Q′,K′) is a learning space
(resp. knowledge space).
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15. Is a partial learning space necessarily finite? How about a partial knowl-
edge space?

16. Show that a quasi well-graded knowledge structure is essentially finite
(cf. 2.3.3).

17. Prove by two counterexamples that the Axioms [L1] and [L2] independent.

18. What knowledge structures satisfy both [L1] and ∪-closure?





3

Knowledge Spaces

3.1 Outline

We have learned from Theorem 2.2.4 that any learning space is a knowl-
edge space, that is, a knowledge structure closed under union. The ∪-closure
property is critical for the following reason. Certain knowledge spaces, and in
particular the finite ones, can be faithfully summarized by a subfamily of their
states. To wit, any state of the knowledge space can be generated by forming
the union of some states in the subfamily. When such a subfamily exists and
is minimal for inclusion, it is unique and is called the ‘base’ of the knowledge
space. In some cases, the base can be considerably smaller than the knowledge
space, which results in a substantial economy of storage in a computer mem-
ory. The extreme case is the power set of a set of n elements, where the 2n

knowledge states can be subsumed by the family of the n singleton sets. This
property inspires most of this chapter, beginning with the basic concepts of
‘base’ and ‘atoms’ in Sections 3.4 to 3.6. Other features of knowledge spaces
are also important, however, and are dealt with in this chapter.

In the next section, we mention in passing the problem of building a knowl-
edge space in practice. The key idea is to code the information concerning the
structure in the form of a relation R on the power set of the domain, with the
following interpretation: ARB holds if failing all the items in A implies failing
all those in B. Such a relation defines a unique knowledge space. It can be
obtained either by querying experts, or from assessment statistics. This topic
is systematically expanded in Chapters 7, 15 and 16.

To any knowledge space K corresponds its ‘dual’, that is, the family con-
taining all the complements of states of K. This interplay is of interest because
the duals of knowledge spaces belong to an important family of mathematical
structures called ‘closure spaces.’ Much is known regarding ‘closure spaces’
that has a useful translation in our context. These structures are introduced
Section 3.3.

This chapter also covers two situations in which a particular quasi order
on the domain plays a special role. In Section 3.7, we introduce the ‘surmise
relation’, a quasi order which is also called the ‘precedence relation.’ It holds
between two items r and q when the mastery of r can be inferred from that
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of . In this case, the quasi order is built from the knowledge structure (which
need not be a knowledge space). In the second situation, which we discuss in
Section 3.8, the quasi order on the domain can be primary. It then defines a
particular kind of knowledge space in which the family of states is also closed
under intersection. The relevant Theorem 3.8.3 is due to Birkhoff (1937). An
extension to general knowledge spaces is given in Theorem 5.2.5.

3.2 Generating Knowledge Spaces by Querying Experts

A concept akin to knowledge spaces, but mathematically quite different, was
introduced in 1.1.9 under the name of ‘entailment.’ We indicated there that
entailments can be used to construct a knowledge space by querying an expert
without actually asking him to provide an explicit list of all the knowledge
states. Recalling the relevant passage of Chapter 1, imagine that an experi-
enced teacher is asked, in a systematic way, questions of the following type:

[Q1] Suppose that a student under examination has just provided
wrong responses to all the items q1, . . . , qn. Is it practically
certain that this student will also fail item qn+1? We assume that
careless errors and lucky guesses are excluded1.

The responses to all such questions define a relation R on 2Q \ {∅}, with
the following interpretation: for any two nonempty sets A, B of items, we have

ARB if and only if

{
from the failure of all the items in A

we infer the failure of all the items in B.
(3.1)

It turns out that any such relation R on 2Q \{∅} specifies a unique knowl-
edge space. The definition of its states is given in the next theorem, which
extends the discussion to sets of arbitrary cardinality.

3.2.1 Theorem. Suppose that Q is a nonempty set, with R a relation on
2Q\{∅}. Let S be the family of all the subsets K of Q satisfying the condition:

K ∈ S ⇐⇒
(
∀(A,B) ∈ R : A ∩K = ∅ ⇒ B ∩K = ∅

)
. (3.2)

Then S contains ∅ and Q, and is closed under union.

Proof. Take F ⊆ S and suppose that ARB, with A ∩ (∪F) = ∅. We obtain:
A ∩ K = ∅, for all K in F. Using (3.2), we derive that we must also have
B∩K = ∅ for all K in F. This gives B∩ (∪F) = ∅ and thus ∪F ∈ S. Because
the r.h.s. of (3.2) is trivially satisfied for ∅ and for Q, both must be in S.

1 In practice, we suppose also that n is small, say n ≤ 5. We shall see is Chapter
15 that this assumption is empirically justified. We recall that the label [Q0] is
reserved for the special case where n = 1.

q
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The knowledge space (Q, S) in Theorem 3.2.1 need not be closed under
intersection (see our next example). The relation R provides a powerful tool
for constructing knowledge spaces in practice, whether one is willing to rely
on human expertise or on statistics of student data yielding essentially the
same type of information (see Remark 3.2.3). We devote Chapters 7 and 15
to this topic. The 1-1 correspondence between the collection of entailments
on a set and the collection of knowledge spaces on the same set is established
in Theorem 7.1.5. The relation R is also instrumental for building learning
spaces, as we demonstrate in Chapter 16.

3.2.2 Example. With Q = {a, b, c}, suppose that R contains the single pair
({a, b}, {c}). Thus, both {a, c} and {b, c} are knowledge states in the knowl-
edge space (Q, S); however, their intersection {c} is not a knowledge state.

3.2.3 Remark. Human expertise is not the only way of capitalizing on re-
sults such as Theorem 3.2.1 for constructing knowledge spaces. In cases where
sizable sets of student data are available, one can also rely on conditional
probabilities of failing to solve some problems. Specifically, the relation R of
(3.1) could be constructed via the formula

ARB ⇐⇒ P(failing all the items in B all the items in A are failed) > α,

where P denotes the probability measure, and α is a suitably chosen param-
eter. This probability could be estimated from relative frequencies computed
from students’ data. This avenue is a realistic one since as mentioned in Foot-
note 1, in practice, the size of the set B need not be large.

However, because our primary interest is learning spaces, having succeeded
in building a knowledge space gets us only part of the way. How can we
optimally engineer—either by the addition of well chosen missing states or by
some other technique—the wellgradedness of a knowledge space that is not a
learning space? Solving this problem requires some new tools and results and
we have to postpone the relevant developments. We devote Section 4.5 and
Section 16.3 to these questions.

3.3 Closure Spaces

We recall from 2.2.2 that the dual of a knowledge structure (Q,K) is the
knowledge structure K containing all the complements of states in K, that is

K = {K ∈ 2Q Q \K ∈ K}.

Thus, K and K have the same domain.
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3.3.1 Definition. By a collection on Q we mean a family K of subsets of a
domain Q. We often then write (Q,K) to denote the collection. Note that
a collection may be empty. A collection (Q,L) is a closure space when the
family L contains Q and is closed under intersection. This closure space is
simple when ∅ is in L. Thus, a collection K of subsets of a domain Q is a
knowledge space on Q if and only if the dual structure K is a simple closure
space.

Examples of closure spaces abound in mathematics.

3.3.2 Examples. Let R3 be the set of all points of a 3-dimensional Euclidean
space, and let L be the family of all affine subspaces (that is: the empty set,
all the singletons sets, the lines, the planes and R3 itself). Then L is closed
under intersection. Another example is the family of all convex subsets of R3.

These two examples of closure spaces are only instances of general classes:
replace 3-dimensional Euclidean space by any affine space over an (ordered)
skew field. Moreover, other classes of examples can be found in almost all
branches of mathematics (e.g. by taking subspaces of a vector space, subgroups
of a group, ideals in a ring, closed subsets of a topological space). Our next
example comes from another discipline.

3.3.3 Example. In Example 1.4.4, we considered the collection L of all the
well-formed expressions in some formal language, together with a fixed set of
derivation rules, and a relation I on the set of all subsets of L, defined by:
A IB if all the expressions in B are derivable from the expressions in A by
application of the derivation rules. A knowledge structure can be obtained by
calling any K ⊆ L a state of I if B ⊆ K whenever A ⊆ K and AIB. It is
easily shown that the collection L of all states is closed under intersection;
that is, ∩F ∈ L for any F ⊆ L (see Problem 2).

Closure spaces are sometimes called ‘convex structures2.’ We record below
an obvious construction.

3.3.4 Theorem. Let (Q,L) be a closure space. Then any subset A of Q
is included in a unique element of L, denoted as A′, which is minimal for
inclusion in L; we have for A,B ∈ 2Q,

(i) A ⊆ A′;
(ii) A′ ⊆ B′ when A ⊆ B;
(iii) A′′ = A′.

Conversely, any mapping 2Q → 2Q : A 7→ A′ which satisfies Conditions (i)
to (iii) is obtained from a unique closure space on Q; this establishes a one-
to-one correspondence between those mappings and the closure spaces on Q.
Moreover, ∅′ = ∅ if and only if ∅ ∈ L.

2 For references, see the Sources section 3.9 of this chapter.
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Proof. The intersection of all elements of L that include some A ∈ 2Q is an
element of L, and this intersection is the smallest possible element of L that
includes A (by definition, Q itself is an element of L, and includes A). Proving
Conditions (i) to (iii) is straightforward, and left to the reader (Problem 11).
Conversely, given a mapping 2Q → 2Q : A 7→ A′ satisfying Conditions (i)
to (iii), we set L = {A ∈ 2Q A′ = A}. It is easily verified that L is closed
under intersection. Moreover, the mapping A 7→ A′ is obtained from L via
the above construction. It is now easy to prove the existence of the one-to-one
correspondence mentioned in the statement; we also leave the verification of
this fact to the reader.

3.3.5 Definition. In the notation of Theorem 3.3.4, A′ is called the closure
of the set A (in the closure space (Q,L)).

3.4 Bases and Atoms

3.4.1 Definition. The span of a family of sets G is the family G′ containing
any set which is the union of some subfamily of G. In such a case, we write
S(G) = G′ and we say that G spans G′. By definition S(G) is thus ∪-closed. A
base of a ∪-closed family F is a minimal subfamily B of F spanning F (where
‘minimal’ is meant with respect to set inclusion: if S(H) = F for some H ⊆ B,
then H = B). By a standard convention, the empty set is the union of the
empty subfamily of B. Thus, since the base is minimal, the empty set never
belongs to a base.

It is clear that a state K belonging to some base B of K cannot be the
union of other elements of B. Also, a knowledge structure has a base only if
it is a knowledge space.

3.4.2 Theorem. Let B be a base for a knowledge space (Q,K). Then B ⊆ F

for any subfamily F of states spanning K. Consequently, a knowledge space
admits at most one base.

Proof. Let B and F be as in the hypotheses of the theorem, and suppose
that K ∈ B \F. Then, K = ∪H for some H ⊆ F. Since B is a base, any state
in H is a union of some states in B. This implies that K is a union of sets
in B \ {K}, negating the minimality property of a base. The uniqueness of a
base is now obvious.

Some knowledge spaces have no base.

3.4.3 Example. The collection O of all the open sets of R is a knowledge
space. It is spanned by the family I1 of all the open intervals with rational
endpoints, as well as by the family I2 of all open intervals with irrational
endpoints. If O had a base B, Theorem 3.4.2 would imply that B ⊆ I1∩I2 = ∅,
which is absurd. Thus, O has no base (in the sense of Definition 3.4.1). In the
finite case, however, a base always exists.
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3.4.4 Theorem. Any essentially finite knowledge space has a base.

Indeed, since the number of states is finite, there must be a minimal span-
ning subfamily of states, that is, a base.

The next definition will be useful for the specification of the base when it
exists. Notice that we do not restrict ourselves to the essentially finite case.

3.4.5 Definition. Let F be a nonempty family of sets. For any q ∈ ∪F, an
atom at q is a minimal set of F containing q. A set X ∈ F is called an atom
if it is an atom at q for some q ∈ ∪F.

Note that this meaning of the term ‘atom’ is different from that used in
lattice theory (see e.g. Birkhoff, 1967; Davey and Priestley, 1990).

3.4.6 Example. In the space K = {∅, {a}, {a, b}, {b, c}, {a, b, c}}, the state
{b, c} is an atom at b and also an atom at c. There are two atoms at b, namely
{a, b} and {b, c}. There is only one atom at a, which is {a}. (However, a also
belongs to the atom {a, b}, but the state {a, b} is not an atom at a.)

The knowledge space of Example 3.4.3 has no atoms. On the other hand,
in an essentially finite knowledge structure, there is at least one atom at every
item.

Another characterization of the atoms in a knowledge space is given below.

3.4.7 Theorem. A state K in a knowledge space (Q,K) is an atom if and
only if K ∈ F for any subfamily of states F satisfying K = ∪F.

Proof. (Necessity.) Suppose that K is an atom at q, and that K = ∪F
for some subfamily F of states. Thus, q must belong to some K ′ ∈ F, with
necessarily K ′ ⊆ K. We must have K = K ′, since K is a minimal state
containing q. Thus, K ∈ F.

(Sufficiency.) If K is not an atom, for each q ∈ K, there must be some
state K ′(q) with q ∈ K ′(q) ⊂ K. With F = {K ′(q) q ∈ K}, we thus have
K = ∪F, and K /∈ F.

3.4.8 Theorem. Suppose a knowledge space has a base. Then this base is
formed by the collection of all the atoms.

Proof. Let B be the base of a knowledge space (Q,K), and let A be the
collection of all the atoms. (We do not assume that there is an atom at every
item.) We have to show that A = B. If some K ∈ B is not an atom, then,
for every q ∈ K, there exists a state K ′(q) with q ∈ K ′(q) ⊂ K. But then
K = ∪q∈KK ′(q) and we cannot have K ∈ B. (Since each K ′(q) is a union of
states in B, we see that K is a union of other states in B.) Thus, K must be
an atom for at least one item. Every element of the base is thus an atom, and
we have B ⊆ A. Conversely, take any K ∈ A. Then, K = ∪F for some F ⊆ B.
By Theorem 3.4.7, we have K ∈ F ⊆ B. Thus, A = B.

Even when the base exists, there may not be an atom at every item.
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3.4.9 Example. Define G = {[0, 1
n ] n ∈ N}∪{∅}. Then ([0, 1],G) is a knowl-

edge space, with a base consisting of all the states except ∅; every item has
an atom, except 0. Note that ([0, 1],G) is not discriminative. However, its
discriminative reduction ([0, 1]∗,G∗) (cf. Definition 2.1.5) provides a similar
counterexample. (It has a base but no atom at 0∗.)

The importance of the base as a compact summary of a knowledge space
prompts the search for efficient algorithms for constructing that base and for
generating the states from the base. Two such algorithms are sketched in the
next two sections.

3.5 An Algorithm for Constructing the Base

We assume that the domain Q of the knowledge space is finite, with |Q| = m
and |K| = n. By Theorem 3.4.8, the base of a knowledge space is formed by
all the atoms. Recall from Definition 3.4.5 that an atom at q is a minimal
state containing q. A simple algorithm for building the base, due to Dowling
(1993b) and described below, is grounded on this definition of an atom.

3.5.1 Sketch of Algorithm. List the items arbitrarily as q1, . . . , qm. List
the states as K1, . . . ,Kn in such a way that Ki ⊂ Kk implies i < k for
i, k ∈ {1, . . . , n}. (Thus, list the states according to nondecreasing size, and
arbitrarily for states of the same size.) Form an n ×m array T = (Tij) with
the rows and columns representing the states and items, respectively; thus,
the rows are indexed from 1 to n and the columns from 1 to m. At any step of
the algorithm, a cell of T contains one of the symbols ‘∗’, ‘+’ or ‘−’. Initially,
set Tij to ∗ if state Ki contains item qj ; otherwise, set Tij to −. The algorithm
inspects rows i = 1, . . . , n and tranforms any value ∗ in a cell (i, j) into +
whenever the following condition is satisfied: there exists an index p such that
1 ≤ p < i, state Kp contains item qj , and Kp ⊂ Ki. When this is done, the
atoms are the states Ki for which row i still contains at least one ∗.

3.5.2 Example. Take the space K = {∅, {a}, {a, b}, {b, c}, {a, b, c}} from Ex-
ample 3.4.6. The initial array T is shown on the left of Table 3.1. From the
final value of T on the right, we conclude that the base is {{a}, {a, b}, {b, c}}.

Table 3.1. The initial and final values of the array T in Example 3.5.2.

a b c

∅ − − −
{a} ∗ − −
{a, b} ∗ ∗ −
{b, c} − ∗ ∗
{a, b, c} ∗ ∗ ∗

a b c

∅ − − −
{a} ∗ − −
{a, b} + ∗ −
{b, c} − ∗ ∗
{a, b, c} + + +
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It is easily checked that Algorithm 3.5.1 also works when provided with a
spanning family instead of the space itself (see Problem 4).

The description given for this algorithm is intended for an initial encoding
of a space or of a spanning family F as an n ×m array with each cell (i, j)
indicating whether state Ki contains item qj . It is not difficult to redesign the
search for atoms in the case of a different encoding of the space (for instance,
as a list of states with each state being a list of items).

3.5.3 An Algorithm for Generating a Space from its Base. The solu-
tion described below owes much to that of Dowling (1993b). However, by
clarifying some of the underlying ideas, we improve both the principle and
the efficiency of the algorithm.

We consider a base B that contains p states, with B = {B1, . . . , Bp}. The
states of the corresponding knowledge space are manufactured by a sequential
procedure based on considering increasingly larger subfamilies of the base.
We set G0 = {∅} and for i = 1, . . . , p, we define Gi as the space spanned by
Gi−1 ∪ {Bi}. This is the general scheme, but some care is required to ensure
efficiency. Clearly, at any step i of the algorithm, the new states created by
taking the span of Gi−1 ∪ {Bi} are all of the form G ∪ Bi with G ∈ Gi−1.
However, some states formed by taking the union of Bi with some states
in Gi−1 may already exist in Gi. A straightforward application of this scheme
would require verifying for each newly generated state whether it was obtained
before. As in general the number n of states can grow exponentially as a
function of p, such verifications may be prohibitive. Accordingly, we want to
form G∪Bi only when this union delivers a state not created before (whether
at the current step, or earlier). Here is the crucial point: among all states G
from Gi−1 producing a state K = G∪Bi, there is a unique maximum one that
we denote by M . We thus have K = M ∪ Bi, and moreover K = G ∪ Bi for
G ∈ Gi−1 implies G ⊆M . The existence and uniqueness of M follow from the
fact that Gi−1 is closed under union. Condition (ii) in the result below provides
a manageable characterization of the state M which is the key component of
the algorithm. In this theorem, we consider the situation in which an arbitrary
subset B of a domain Q is added to the base D of a knowledge space G on Q.

3.5.4 Theorem. Let (Q,G) be a knowledge space with base D, and take
M ∈ G and B ∈ 2Q. The following two conditions are equivalent:

(i) ∀G ∈ G : M ∪B = G ∪B ⇒ G ⊆M ;
(ii) ∀D ∈ D : D ⊆M ∪B ⇒ D ⊆M.

Proof. (i)⇒ (ii). If D ⊆M∪B for some D ∈ D, we get M∪B = (M∪D)∪B.
As M ∪D ∈ G, our hypothesis implies M ∪D ⊆M , that is D ⊆M .

(ii) ⇒ (i). If M ∪B = G ∪B with G ∈ G, there exists a subfamily E of D
such that G = ∪E. For D ∈ E, we have D ⊆M ∪B, hence by our hypothesis
D ⊆M . We conclude that G ⊆M .
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Returning to our discussion of the algorithm, we now have a way of gen-
erating, at the main stage i, only distinct elements G ∪Bi: it suffices to take
such a union exactly when G from Gi−1 satisfies the condition

∀D ∈ {B1, . . . , Bi−1} : D ⊆ G ∪Bi =⇒ D ⊆ G. (3.3)

We must also avoid generating a state G ∪ Bi belonging to Gi−1 (that is,
a state that was generated at some earlier main stage). To this effect, notice
that for G ∈ Gi−1 satisfying (3.3), we have G∪Bi ∈ Gi−1 if and only if Bi ⊆ G.

3.5.5 Sketch of Algorithm. Let B = {B1, . . . , Bp} be the base of some
knowledge space K on Q to be generated by the algorithm. Initialize G to
{∅}. At each step i = 1, 2, . . . , p, perform the following:

(1) Initialize H to ∅.

(2) For each G ∈ G, check whether
Bi 6⊆ G and ∀D ∈ {B1, . . . , Bi−1} : D ⊆ G ∪Bi ⇒ D ⊆ G.
If the condition holds, add G ∪Bi to H.

(3) When all G’s from G have been considered, replace G with G ∪H.
(This terminates step i.)

The family G obtained after step p is the desired space K.

3.5.6 Example. For the base B = {{a}, {a, b}, {b, c}}, Table 3.2 displays the
successive values of G.

Table 3.2. The successive values of G in Example 3.5.6.

Main stage base element states in G

initialization ∅
1 {a} ∅, {a}
2 {a, b} ∅, {a}, {a, b}
3 {b, c} ∅, {a}, {a, b}, {b, c}, {a, b, c}

3.5.7 Example. Here is another example, with B = {{a},{b, d},{a, b, c},
{b, c, e}}. In Table 3.3, we only show on each line the base element considered
at this main stage together with the additional state(s) produced.

Table 3.3. The successive values of H in Example 3.5.7.

Base element states in H

initialization ∅
{a} {a}
{b, d} {b, d}, {a, b, d}
{a, b, c} {a, b, c}, {a, b, c, d}
{b, c, e} {b, c, e}, {b, c, d, e}, {a, b, c, e}, {a, b, c, d, e}
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3.5.8 Remarks. a) Algorithm 3.5.5 can be applied to any spanning subfamily
F of a knowledge space K to produce that space (see Problem 5). In the case
of a spanning subfamily F which is not the base, we recommend however to
first construct the base B of K by applying Algorithm 3.5.1 to F. Algorithm
3.5.5 can then be applied to B to produce K.

b) A few words about the efficiency of Algorithm 3.5.5 are in order. Experi-
ments show that the execution time of a computer program implementing this
algorithm may be affected by the order in which the base states (or spanning
states) are listed. No ‘best’ rule seems to emerge about a plausible, optimal
way of encoding the base states. On the other hand, an improvement is ob-
tained with many data sets by the following variant of Algorithm 3.5.5. At
each step i, build the union U of all Bj ’s with 0 < j < i and Bj ⊂ Bi. When
a G ∈ G is taken into consideration, first check whether U ⊆ G. If U 6⊆ G, the
verification of step (2) in Algorithm 3.5.5 can be skipped, because the condi-
tion cannot hold. Dowling’s original algorithm relies heavily on such unions U .
This algorithm is also sensitive to the selected ordering. Our modified version
performs usually faster by 10% to 30%.

c) On the theoretical side, the complexity of Algorithm 3.5.5 (in the sense
of Garey and Johnson, 1979) is good. Because the cardinality n of the family
K of sets spanned by a base B containing p states in a domain Q of m items
can grow exponentially with p, we analyze the complexity in terms of m, p
and n together. Algorithm 3.5.5 has execution time in O(n · p2 ·m), in other
words there exist natural numbers m0, p0 and n0 and a positive real number
c such that execution on a domain of size m ≥ m0 with a base of size p ≥ p0

producing a space of size n ≥ n0 will always take less than c · n · p2 ·m steps
(see Problem 12).

3.6 Bases and Atoms: The Infinite Case*

The results on bases and atoms are straightforward in the case of essentially
finite knowledge structures. As shown by Example 3.4.3, however, there is no
guarantee that atoms exist in the infinite case. There is one type of infinite
structures in which the base always exists, namely, the so-called ‘finitary’ case
defined below. The term ‘finitary’ comes from the theory of closure spaces (see
the Sources section 3.9 at the end of this chapter).

3.6.1 Definition. A knowledge structure K is finitary when the intersection
of any chain of states in K is a state. We also say that K is granular if for
any state K containing some item q, there is an atom at q that is included
in K. Obviously, any essentially finite knowledge structure is both finitary
and granular. Another example is given below.
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3.6.2 Example. Let (V, S) be a knowledge structure, where V is a real vector
space and S is the family of all the subspaces of V . Then its dual knowledge
structure (V, S) is a finitary and granular knowledge space.

3.6.3 Theorem. Any finitary knowledge structure is granular. The converse
does not hold, even for knowledge spaces.

Proof. Consider the collection F of states that are included in a state K and
contain an item q, ordered by inclusion. By Hausdorff’s Maximal Principle,
F must include at least one maximal chain C (cf. 1.6.10). If the knowledge
structure is finitary, ∩C is a state and an atom at q. Example 3.6.5 establishes
the second statement.

As an immediate consequence, we have:

3.6.4 Corollary. The span of the family A of all the atoms of a finitary
knowledge structure K necessarily includes K.

The next example is that of a granular knowledge space which is not
finitary.

3.6.5 Example. Consider the following subsets of [0, 2]:

{0} ∪
[1

k
,

2

k

]
, for k ∈ N.

Since none of these subsets includes any other one, their collection forms the
base B of a granular knowledge space K (in this case, any state in the base
is an atom at each of the items it contains). On the other hand, K is not
finitary. Since [0, 2

k ] = {0} ∪
(⋃∞

j=k[ 1
j ,

2
j ]
)
, the family of intervals [0, 2

k ], for

k ∈ N, constitutes a chain in K whose intersection {0} is not in K.

Together with Theorem 3.6.3, the following result shows that any finitary
knowledge space has a base.

3.6.6 Theorem. Any granular knowledge space has a base.

Proof. Consider the collection B of all the atoms in a granular knowledge
space (Q,K). By Definition 3.6.1, any knowledge state in K is the union of
all the atoms that it includes. Thus the family B spans K, and it is clearly
minimal with this property.

A knowledge space may have a base without being granular. This happens
in Example 3.4.9: there is no atom at 0.

We now study the condition of closure under intersection from the point
of view of the atoms of the knowledge space.

3.6.7 Theorem. A knowledge space K closed under intersection has exactly
one atom at each item q, which is specified by ∩Kq. Moreover, a granular
knowledge space K having exactly one atom at each item is necessarily closed
under intersection.



54 3 Knowledge Spaces

Proof. The assertions in the first sentence are obvious. Suppose that the
knowledge space K has exactly one atom at each item and let F be a subfamily
of K. If ∩F = ∅, then ∩F is a state. Otherwise, take any q ∈ ∩F, and let
K(q) be the unique atom at q. For all K ∈ F, we must have K(q) ⊆ K since,
by granularity, there is an atom at q included in K. Hence K(q) ⊆ ∩F, and
because K is a knowledge space, we get ∩F = ∪q∈∩FK(q) ∈ K .

The following example shows that the granularity assumption cannot be
dropped in the second statement of Theorem 3.6.7.

3.6.8 Example. Take the knowledge space K on R with base{[
0,

1

n

]
n ∈ N

}
∪ { ]−∞, 0], R }.

Then for each r ∈ R there is a unique atom at r. However, the intersection of
the states ]−∞, 0] ∩ [0, 1] = {0} does not belong to K.

3.6.9 Corollary. A granular knowledge space K is closed under intersection
if and only if there is exactly one atom at each item.

A more systematic study of knowledge spaces closed under intersection is
contained in the next section.

3.7 The Surmise Relation

An important part of this book concerns the analysis, within the framework
of knowledge structures, of the possible ways of learning the material in a

item. Intuitively, an item r is a predecessor of an item q if r is never mastered
after q, either for logical or historical reasons. The next definition formalizes
the intuitive idea that the predecessors of some item q are the items contained
in all the states containing q.

3.7.1 Definition. Let (Q,K) be a knowledge structure, and let - be a rela-
tion on Q defined by

r - q ⇐⇒ r ∈ ∩Kq. (3.4)

The relation - will be called the surmise relation or sometimes the precedence
relation of the knowledge structure. (The usage of the two terminologies is
discussed in Remark 3.7.3.) When r - q holds, we say that r is surmisable
from q, or that r precedes q. If moreover q - r does not hold, then we write
r ≺ q and say that r strictly precedes q.

Notice the equivalence:

r - q ⇐⇒ Kr ⊇ Kq, (3.5)

which holds for any knowledge structure K and any items q, r in its domain.
We leave the verification of this fact to the reader (cf. Problem 6). The equiv-
alence (3.5) immediately implies the following result.

domain Q. This leads naturally to study the concept of a ‘predecessor’ of an
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3.7.2 Theorem. The surmise relation of a knowledge structure is a quasi
order. When the knowledge structure is discriminative, this quasi order is a
partial order.

By abuse of language, we will occasionally make reference to the Hasse
diagram of a knowledge structure K, to mean the Hasse diagram of the surmise
relation of the discriminative reduction K∗ = {K∗ K ∈ K} (cf. 2.1.4).

3.7.3 Remark. Two viewpoints can be taken with regard to the relation -.
One is that of inference: if r - q, then the mastery of r can be surmised from
that of q. The other one is that of learning: r - q means that r is always
mastered before or at the same time as q, either for logical reasons or because
this is the custom in the population of reference. As an illustration, consider
the following two questions in European history:

Question q: Who was the prime minister of Great Britain
just before World War II?

Question r: Who was the prime minister of Great Britain
during World War II?

Today, anybody knowing that the answer to question q is ‘Neville Cham-
berlain’ would also know that the next prime minister was Winston Churchill.
In our terms, this means that any state containing q would also contain r, that
is, r - q. Obviously, logic plays no role in this dependency, which only relies
on the structure of the collection of states, which itself is a reflection of the
population of subjects under consideration3. In many cases, however, espe-
cially in mathematics or science, the formula r - q will mean that, for logical
reasons, r must be mastered before or at the same time as q.

In Chapter 5, we shall discuss a generalization of the concept of a surmise
relation formalizing the following natural idea: to any item q in the structure
is attached a collection of possible learning backgrounds (that is, sets of items)
preparing a student for the mastery of q.

We examine an example of a surmise relation.

3.7.4 Example. Consider the knowledge structure

G =
{
∅, {a}, {b}, {a, b}, {b, c}, {a, b, c}, {b, c, e},

{a, b, c, e}, {a, b, c, d}, {a, b, c, d, e}
}
. (3.6)

It is easy to verify that G is a discriminative knowledge space (cf. 2.1.4
and 2.2.2). The surmise relation - of G is thus a partial order. The Hasse
diagram of - is given in Figure 3.1. We leave to the reader to work out the
details of the construction of - from the knowledge structure G.

3 The idea is that in such a population, it is very unlikely to find some individ-
ual knowing the answer to Question q who would not also know the answer to
Question r; so, the possibility can be ignored.
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As an illustration, notice that

c ∈ {a, b, c, d} ∩ {a, b, c, d, e} = ∩Gd,
and so

c - d.

On the other hand, a /∈ {b, c, e}. Thus a /∈ Ge, yielding ¬(a - e): in the Hasse
diagram, there is no broken line descending from e to a.

e

c

d

a b

Figure 3.1. Hasse diagram of the sur-
mise relation of the knowledge structure G

specified by Equation (3.6).

The surmise relation offers a compact summary of the information con-
tained in a knowledge structure, especially when the domain is finite with a
small number of elements. It must be realized, however, that some information
might be missing: different knowledge structures may have the same surmise
relation.

For instance, the knowledge structure G′ = G\{{b, c}} has the same surmise
relation as G. This raises the question: When is a knowledge structure fully
described by its surmise relation? A well-known result of Birkhoff (1937),
labeled as Theorem 3.8.3 in the next section, answers the question.

3.8 Quasi Ordinal Spaces

3.8.1 Definition. A knowledge space closed under intersection is called a
quasi ordinal space. The chief reason for this terminology is that, in such a
case, the knowledge structure is characterized by a quasi order, namely, its
surmise relation (see Theorem 3.8.3). A discriminative and quasi ordinal space
is a (partially) ordinal space. The surmise relation of such a space is a partial
order. It is clear that a quasi ordinal space is finitary (cf. Definition 3.6.1).

3.8.2 Theorem. Let K and K′ be two quasi ordinal spaces on the same
domain Q. Then,

(∀q, s ∈ Q : Kq ⊆ Ks ⇔ K′q ⊆ K′s) ⇐⇒ K = K′. (3.7)
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Proof. The implication from right to left is trivial. To establish the converse
implication, suppose that K ∈ K. For some state K ′ ∈ K′, we then have

K ⊆
⋃
q∈K

(∩K′q) = K ′ . (3.8)

We show that, in fact, K = K ′. Take any s ∈ K ′. There must be some q ∈ K
such that s ∈ ∩K′q. Thus, K′q ⊆ K′s, which implies Kq ⊆ Ks, by the l.h.s. of
(3.7). We obtain s ∈ ∩Kq, yielding s ∈ K. This gives K ′ ⊆ K, and by (3.8),
K = K ′. We conclude that K ⊆ K′, and by symmetry, K = K′.

3.8.3 Theorem. (Birkhoff, 1937) There exists a one-to-one correspondence
between the collection of all quasi ordinal spaces K on a domain Q, and the
collection of all quasi orders Q on Q. Such a correspondence is defined by the
two equivalences

pQq ⇐⇒ (∀K ∈ K : q ∈ K ⇒ p ∈ K) (3.9)

K ∈ K ⇐⇒ (∀(p, q) ∈ Q : q ∈ K ⇒ p ∈ K). (3.10)

Under this correspondence, ordinal spaces are mapped onto partial orders.

Notice that Equation (3.9) can be written more compactly as

pQq ⇐⇒ Kp ⊇ Kq. (3.11)

Thus, by (3.5), the quasi order Q defined by (3.11) from the knowledge struc-
ture K is just the surmise relation of K.

Proof. Equation (3.9) clearly defines a quasi order on Q (cf. Theorem 3.7.2).
Conversely, for any quasi order Q on Q, Equation (3.10) defines a family
K of subsets of Q. We establish the relevant properties of this last family.
First, the family K necessarily contains Q and also ∅, since the implication
q ∈ ∅ ⇒ p ∈ ∅ is vacuously true for any (p, q) ∈ Q. Thus, K is a knowledge
structure. We show that K is closed under intersection. Take any K,K ′ ∈ K

and suppose that pQq, with q ∈ K ∩K ′. We obtain q ∈ K, q ∈ K ′, which by
(3.10) implies that p ∈ K, p ∈ K ′, yielding p ∈ K ∩K ′. Thus, K ∩K ′ ∈ K.
Similarly, the intersection of any subfamily of K belongs to K. The proof that
K is closed under union is similar.

It remains to show that the two equivalences (3.9) and (3.10) define a
bijection. We write Kso for the collection of all quasi ordinal spaces K on a
domain Q, and Ro for the collection of all quasi orders Q on Q. The result
obtains if the two mappings

f : Kso → Ro : K 7→ f(K) = Q,

g : Ro → Kso : Q 7→ g(Q) = K

respectively defined by (3.9) and (3.10) are mutual inverses. By Equation
(3.11) and Theorem 3.8.2, f is an injective function. Let Q be any quasi order
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on Q, with K = g(Q) and f(K) = Q′. Using (3.10), pQq implies that for all
K ∈ K, q ∈ K ⇒ p ∈ K, yielding pQ′q by (3.9).

Moreover, if pQ′q, we take K = {x ∈ Q xQq}: since K ∈ K and q ∈ K,
we have p ∈ K, hence pQq. Thus, Q = Q′. Hence, any quasi order Q is in
the range of the function f . We conclude that f and g are mutually inverse
functions.

The last assertion regarding ordinal spaces is obvious.

3.8.4 Definition. Referring to the correspondence described in Theorem
3.8.3, we say that the quasi ordinal space g(Q) is derived from the quasi
order Q, and similarly that the quasi order f(K) is derived from the quasi
ordinal knowledge structure K.

For later reference, we point out that Equation (3.10) can be used with
any relation Q to produce a knowledge space. The proof of the next theorem
is left as Problem 7.

3.8.5 Theorem. Let Q be any relation on a domain Q, and define a collection
K of subsets of Q by the equivalence:

K ∈ K ⇐⇒ (∀(p, q) ∈ Q : q ∈ K ⇒ p ∈ K). (3.10)

Then K is a quasi ordinal knowledge space on Q.

3.8.6 Definition. In the context of Theorem 3.8.5, we say that the quasi
ordinal space K is derived from the relation Q.

We leave the proof of the next result as Problem 15.

3.8.7 Theorem. Any finite ordinal space is a learning space.

3.9 Original Sources and Related Works

Most of our original paper (Doignon and Falmagne, 1985) was restricted to the
finite case. Other relevant references are mentioned in Section 1.7. The results
presented in this chapter for the infinite case were formulated in Doignon and
Falmagne (1999), as for instance, those concerning the concept of a granular
knowledge structure. Note, however, that a granular knowledge space is just
the dual of a ‘convex structure’ in the sense of Van de Vel (1993).

A paper by Dowling (1993b) contains two algorithms. One constructs the
base of a finite knowledge space; the other generates the space spanned by a
finite family of sets. For the second task, we provide in 3.5.5 another algorithm
which is similar in spirit but is much easier to grasp. It is also slightly more
efficient on the average. A different algorithm, due to Ganter (1984, 1987, see
also Ganter and Wille, 1996) in the framework of concept lattices, can also
be used for the second task; it has the same overall theoretical efficiency but
avoids storing the previously generated states.
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In our terminology, Birkhoff’s Theorem4 concerns quasi ordinal spaces.
A variant for knowledge spaces in general is given in Chapter 5. We mentioned
in Example 3.3.2 a few mathematical examples of families of sets closed under
intersection. A closure space (Definition 3.3.1) is often also called a ‘convexity
space.’ The first term is used by Birkhoff (1967) and Buekenhout (1967), for
example, while the second can be found in particular in Sierksma (1981).
Birkhoff (1967) also refers to any family of subsets closed under intersection
as a ‘Moore family.’ The excellent monograph of Van de Vel (1993) concerns
‘convex structures’ (also called ‘aligned spaces’ after Jamison-Waldner, 1982).
These structures are dual to finitary knowledge spaces (cf. Definition 3.6.1).
The word ‘finitary’ was used to qualify such closure spaces (which Buekenhout,
1967, calls ‘espaces à fermeture finie’). It is motivated by the following result
(often taken as a definition of ‘finitary closure space’): The closure space (Q,L)
is finitary if and only if the closure of any subset A of Q is the union of all
closures of finite subsets of A (see Problem 13). Chapter 8 extends the concept
of a closure to the general context of a quasi order.

Problems

1. How many states are contained in the dual of the knowledge structure H

of Example 2.1.3? Specify some of these states.

2. Prove that the collection L of states in Example 3.3.3 is closed under
intersection. Explain how this result is related to Theorem 3.2.1.

3. Does Theorem 3.2.1 still hold if R is a relation on 2Q? Provide a coun-
terexample if your response is negative.

4. Show that Algorithm 3.5.1 also correctly builds the base when provided
with a spanning family instead of the space itself.

5. Show that Algorithm 3.5.5 also correctly builds the space when provided
with a spanning family instead of the base itself.

6. Prove Equation (3.5) in Definition 3.7.1.

7. Prove Theorem 3.8.5.

8. If a knowledge space is ordinal (resp. quasi ordinal), is it true that any of
its projections and children are also ordinal (resp. quasi ordinal)?

9. Suppose that all the projections of a knowledge structure K are spaces,
(resp. discriminative structures, closure spaces). Is it necessarily true,
then, that K is itself a space (resp. a discriminative structure, a closure
space)?

4 Our Theorem 3.8.3.
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10. For each of the following properties of a knowledge structure, check
whether it implies the same property for the dual structure:
(a) being a space;
(b) being quasi ordinal;
(c) being ordinal.

11. Prove Conditions (i), (ii) and (iii) in Theorem 3.3.4. Prove that the cor-
respondence mentioned in the statement is 1-1.

12. Establish the assertions made regarding the execution time of Algorithm
3.5.5 in Remarks 3.5.8)(c).

13. (Finitary closure spaces.) As in Definitions 3.3.1 and 3.3.5, let (Q,L) be
a closure space, with A′ denoting the closure of a subset A of Q. Dually
to Definition 3.6.1, we say that (Q,L) is ∩-finitary when the union of any
chain of states is a state. Show that (Q,L) is ∩-finitary if it satisfies the
following condition: for any p ∈ Q and A ⊆ Q, we have p ∈ A′ if and only
if p ∈ F ′ for some finite subset F of A. The converse also holds, but its
proof may be more difficult. (In this connection, see for example: Cohn,
1965; Van de Vel, 1993).

14. (Feasible Symbologies.) Not all arbitrarily chosen set of symbols consti-
tutes a symbology (or alphabet) that is appropriate for communication
purposes. Conflicting considerations enter into the construction of an ac-
ceptable symbology S. On the one hand, any symbol in S must, in princi-
ple, be readily recognized as such, which means that these symbols must
be easy to distinguish from other symbols available in some larger set. On
the other hand, these symbols must also be discriminable from each other
(see Jameson, 1992). For example, it is plausible that the set

{♠,♥,♦,♣, 0, 1, . . . , 9} (3.12)

would not be considered to form an appropriate symbology, while its two
subsets {♠,♥,♦,♣} and {0, 1, . . . , 9} would no doubt be suitable. From
a formal viewpoint, this situation is similar to that of Example 3.3.3.
Consider a set C of symbols forming the universe of discourse. That is, the
symbols in C are the only ones under consideration. (The set specified in
Equation (3.12) is an instance of such a set S.) It is conceivable that several
subsets of C could form acceptable symbologies. Discuss this example in
the style of Example 3.3.3. (Try to adapt Theorem 3.2.1.)

15. Prove Theorem 3.8.7.
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Well-Graded Knowledge Structures

Wellgradedness was introduced in Definition 2.2.2 as a powerful property im-
plied by the two axioms [L1] and [L2] defining learning spaces (cf. Section 2.2).
As stated in Theorem 2.2.4, any well-graded knowledge space is in fact a
learning space and conversely. In this chapter, we focus on the wellgradedness
property per se. We define some new concepts, derive important consequences,
and describe a variety of applications to topics quite different from education.
The results of this chapter will have applications elsewhere in this book. For
example, they will provide the combinatoric skeleton for the learning theories
developed in Chapters 9 and 12 and for some of the assessment procedures
described in Chapters 13 and 14. To avoid minor technicalities, we restrict
consideration to discriminative structures.

4.1 Learning Paths, Gradations, and Fringes

The knowledge state of an individual may vary over time. For example, the
following learning scheme is reasonable. A novice student is in the empty state
and thus knows nothing at all. Then, one or a few items are mastered; next,
another batch is absorbed, etc., up to the eventual mastery of the full domain
of the knowledge structure. There may be many possible learning sequences,
however. Forgetting may also take place. More generally, there may be many
ways of traversing a knowledge structure, evolving at each step from one state
to another closely resembling one, and various reasons for doing so.

4.1.1 Definition. A learning path in a knowledge structure (Q,K) (finite or
infinite) is a maximal chain C in the partially ordered set (K,⊆). According
to the definition of ‘chain’ in 1.6.10, we have thus C ⊆ C ′ or C ′ ⊆ C for all
C,C ′ ∈ C. Saying that the chain C is maximal means that whenever C ⊆ C′

for some chain of states C′, then C = C′. Thus, a maximal chain necessarily
contains ∅ and Q.

J.-C. Falmagne, J.-P. Doignon, Learning Spaces, 
DOI 10.1007/978-3-642-01039-2_4, © Springer-Verlag Berlin Heidelberg 2011 
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In some situations, the student could master the items one at a time. For
example, in the case of a finite domain Q containing m elements, a learning
path could take the form

∅ ⊂ {q1} ⊂ {q1, q2} ⊂ · · · ⊂ {q1, q2, . . . , qm} = Q (4.1)

for some particular order q1, q2, . . . , qm of the elements of the domain Q. We
call such a learning path a ‘gradation’ (cf. Definition 4.1.3). Note that a gra-
dation in the sense of Equation (4.1) exists in a knowledge structure only if it
is discriminative. Indeed, for any two items, there must be a state in the gra-
dation of Equation (4.1) containing one item and not the other. Hence, these
two items cannot be equally informative (cf. Definition 2.1.5). This means
that each notion contains a single item. In other words, the knowledge struc-
ture is discriminative. On the other hand, a learning path in a discriminative
structure is not necessarily a gradation. In fact, some discriminative structures
have no gradations.

4.1.2 Example. Take a domain Q containing more than two elements, and
let F be the family containing ∅ and Q, and all the subsets of Q containing
exactly two elements. Then F is a discriminative knowledge structure, and all
the learning paths are of the form: ∅ ⊂ {q, r} ⊂ Q with q 6= r. Note that Q
may be infinite.

We introduce the basic tools of this chapter.

4.1.3 Definition. Let (Q,K) be a finite knowledge structure. A learning path
C in K is called a gradation if for any K ∈ C \ {Q}, there exists q ∈ Q \K
such that K ∪ {q} ∈ C. (Or equivalently: for any K ∈ C \ {∅}, there exists
q ∈ K such that K \ {q} ∈ C.)

We recall (from 1.6.12) that d denotes the canonical distance between sets:
d(K,L) = |K4L|. We know from 2.2.2 that a tight path between two states
K and L is a sequence

K0 = K,K1, . . . ,Kn = L (4.2)

such that

d(Ki,Ki+1) = 1 (0 ≤ i ≤ n− 1) (4.3)

with

d(K,L) = n. (4.4)

The sequence (4.2) is a stepwise path between the states K and L if it satisfies
(4.3), but not necessarily (4.4).

We say that (Q,K) is 1-connected if there is a stepwise path between any
two of its (distinct) states. Remember from 2.2.2 that (Q,K) is well-graded if
there exists a tight path between any two of it states.

Even for a discriminative space, 1-connectedness is not equivalent to well-
gradedness.
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4.1.4 Example. Let K be the knowledge space with base{
{c}, {a, b}, {b, c}, {c, d}, {d, e}

}
.

As there is a stepwise path from any state to ∪K = {a, b, c, d, e}, the space K is
1-connected. However, it is not well-graded: there is no tight path connecting
the two states {a, b} and {d, e}.

Theorem 4.1.7, the central result of this chapter, contains various charac-
terizations of well-graded knowledge structures. It is formulated in terms of a
few additional concepts which we illustrate by our next example.

4.1.5 Example. Consider the knowledge structure

H =
{
∅, {b}, {e}, {d, e}, {a, b, c}, {a, c, d}, {a, b, c, d, }, U

}
.

with domain U = {a, b, c, d, e}. There are (exactly) three states which are at
distance 1 from the state {a, b, c, d}; they are:

{a, c, d} = {a, b, c, d} \ {b},
{a, b, c} = {a, b, c, d} \ {d},

U = {a, b, c, d} ∪ {e}.

The first two of these states result from the removal of either item b or item
d from the state {a, b, c, d}. We say that the set {b, d} forms the ‘inner fringe’
of the state {a, b, c, d}. Similarly, the state U results from adding the item e
to {a, b, c, d}. We say that the set {e} forms the ‘outer fringe’ of {a, b, c, d}.

4.1.6 Definition. The inner fringe of a state K in a discriminative knowledge
structure (Q,K), is the subset of items

KI = {q ∈ K K \ {q} ∈ K}.

The outer fringe of a state K in such a structure is the subset

KO = {q ∈ Q \K K ∪ {q} ∈ K}.

The fringe of K is the union of the inner and outer fringes. We write

KF = KI ∪KO.

Let N(K,h) be the set of all states whose distance from K is at most h, thus:

N(K,h) = {L ∈ K d(K,L) ≤ h}. (4.5)

Then we also have KF =
(
∪N(K, 1)

)
\
(
∩N(K, 1)

)
(cf. Problem 14). In the

sequel, we refer to N(K,h) as the h-neighborhood of K, or sometimes as the
ball of radius h centered at the state K.1

1 Obviously, these concepts would have to be redefined in terms of notions in the
case of non discriminative structures.
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We recall that the complement of a state K in a knowledge structure (Q,K)
is denoted by K = Q \K (cf. 2.2.2).

4.1.7 Theorem. For any family K of finite sets called states, the following
five conditions are equivalent:

(i) K is well-graded;
(ii) for any two states K and L, there exists a stepwise path K = K0, K1,

. . . , Kn = L satisfying

Kj ∩ L ⊆ Kj+1 ⊆ Kj ∪ L (0 ≤ j ≤ n− 1); (4.6)

(iii) for any two distinct states K,L, we have

(K 4 L) ∩KF 6= ∅; (4.7)

(iv) any two states K and L in K which satisfy KI ⊆ L and KO ⊆ L must be
equal;

(v) any two states K and L in K which satisfy KI ⊆ L, KO ⊆ L, LI ⊆ K,
LO ⊆ K must be equal.

Note that this result applies to uncountable families: take, for example,
the family of all finite subsets of R.

Proof. We prove (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (v) ⇒ (i).

(i) ⇒ (ii). Take any two states K and L, with d(K,L) = h. By the defi-
nition of wellgradedness in 2.2.2, there exists a tight path from K to L. Any
tight path is obviously a stepwise path. We leave to the reader to verify that
any tight path connecting K and L satisfies the two inclusions properties in
(4.6) (Problem 5).

(ii) ⇒ (iii). Take any two states K 6= L, and let (Kj)0≤j≤n be a stepwise
path described in Condition (ii). Then K and K1 differ by exactly one ele-
ment q, and we have moreover K ∩ L ⊆ K1 ⊆ K ∪ L. Either q belongs to K,
or it belongs to L, but not both. Hence q belongs to (K 4 L) ∩KF.

(iii) ⇒ (iv). We proceed by contradiction. Let K and L be two distinct
states satisfying KI ⊆ L and KO ⊆ L. Take any q ∈ (K4L)∩KF. If q ∈ K,
then q ∈ KI ⊆ L, contradicting q ∈ K4L. Hence q /∈ K, but then q ∈ L∩KO,
and we obtain q ∈ L and q ∈ KO ⊆ L, a contradiction.

(iv) ⇒ (v). Obvious.

(v) ⇒ (i). Let K and L be two distinct states in K with d(K,L) = h > 0.
We construct a tight path (Ki)0≤j≤h with K = K0 and Kn = L. Since K 6= L,
Condition (v) implies that:

(KI 6⊆ L) or (KO 6⊆ L) or (LJ 6⊆ K) or (LO 6⊆ K).

So, there must be some element q satisfying

q ∈ (KI \ L) ∪ (KO ∩ L) ∪ (LI \K) ∪ (LO ∩K).
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If q ∈ KI\L, we set K1 = K\{q}. In the other three cases, we setK1 = K∪{q}
or Kh−1 = L \ {q} or Kh−1 = L ∪ {q}. We obtain either d(K1, L) = h− 1 (in
the first two cases), or d(K,Kh−1) = h− 1 (in the last two cases). The result
follows by induction.

4.1.8 Remarks. a) The equivalence of (i) and (iv) in Theorem 4.1.7 has
important applications in education. This result tells us that, in a well-graded
structure K, a state is fully specified by its two fringes in the sense that

∀K,L ∈ K : (KI = LI and KO = LO) ⇐⇒ K = L. (4.8)

In practice, in an educational software such as ALEKS for example, learning
spaces are used. Since learning spaces are well-graded by Theorem 2.2.4, the
equivalence (4.8) applies to them. This equivalence means that at the end of an
assessment, the state uncovered can be accurately described by two typically
short lists: one containing all the items in the inner fringe of the student’s
state, and the other all the items in the outer fringe. The interest of such a
representation is not only its economy. The two fringes have a pedagogical
meaning for a student and her teacher. The inner fringe indicates the high
points in a student’s state. These are items that the student may have learned
only recently; the mastery of such items may still be shaky. The outer fringe
is even more useful: it contains the items that the student is ready to learn.
The outer fringe is thus a window to further study.

b) With regard to the stepwise path (Kj)0≤j≤h in Theorem 4.1.7(ii), we
stress that Ki+1 is derived either by removing from Ki an element in Ki \ L,
or by adding to Ki an element in L \Ki.

c) Note that a knowledge structure in which all the learning paths are gra-
dations is not necessarily well-graded. As an example, consider the knowledge
structure {

∅, {a}, {c}, {a, b}, {b, c}, {a, b, d}, {b, c, d}, {a, b, c, d}
}
.

This structure has two learning paths, both of which are gradations, but is
not well-graded: the two states {a, b} and {b, c} have the same inner fringe
{b} and outer fringe {d} but are different, contradicting Condition (iv) of
Theorem 4.1.7 and the equivalence (4.8). Moreover, there is no tight path
connecting those states. We have in fact

({a, b} 4 {b, c, }) ∩ {a, b}F = {a, c} ∩ {b, d} = ∅.

We mention a consequence of Theorem 4.1.7 which specifies the meaning
of Axiom [L1] from 2.2.1.
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4.1.9 Theorem. For any knowledge space (Q,K), the following three condi-
tions are equivalent:

(i) (Q,K) is well-graded;
(ii) (Q,K) is finite and all its learning paths are gradations;

(iii) Axiom [L1] holds.

Proof. (i) ⇒ (ii). Remember that any well-graded knowledge structure is
necessarily finite (cf. 2.2.2). Let C be any learning path, and take any K in
C \ {Q}. Denote by L the state that immediately follows K in C. By Theo-
rem 4.1.7, (i) ⇒ (iii), there exists some q in (K 4L) ∩KF. Thus, K + {q} is
a state included in L. Since C is maximal, we must have K + {q} = L ∈ C.
This implies that C is a gradation.

(ii) ⇒ (iii). We leave this part of the proof to the reader as Problem 6.

(iii) ⇒ (i). This follows from Lemma 2.2.3.

Two other characterizations of finite, discriminative well-graded knowledge
spaces will be given in Chapter 11 (Theorems 11.5.3 and 11.5.4).

4.1.10 Theorem. Any finite ordinal space (Q,K) is well-graded.

In Theorem 4.3.5, we extend this result to all ordinal spaces (on the basis
of the concept of ‘∞-wellgradedness’ for infinite structures defined in 4.3.3).

Proof. In view of Theorem 2.2.4, we need only prove that Axiom [MA] holds,
that is: any state K contains an item q such that K \ {q} ∈ K. It suffices to
take for q any item maximal in K for the partial order from which K derives.
It is clear that K \ {q} is then also a state.

4.2 A Well-Graded Family of Relations: the Biorders?

An interesting example of a well-graded structure arises in the theory of order
relations, in the guise of the ‘biorders.’ In fact, several well-known families of
relations— regarded as sets of pairs—can be shown to be well-graded in the
sense of Definition 2.2.2. We indulge in this detour into the theory of order
relations to illustrate potential applications of our results beyond the main
focus of this monograph. We restrict considerations to finite structures.

4.2.1 Definition. Let X and Y be two basic finite, nonempty sets, with Y
not necessarily disjoint or distinct from X. Following our convention in 1.6.1,
we abbreviate the pair (x, y) ∈ X × Y as xy. A relation R from X to Y , that
is R ⊆ X × Y , is called a biorder if for all x, x′ ∈ X and y, y′ ∈ Y , we have

[BO] (xRy, ¬(x′Ry) and x′Ry′)⇒ xRy′.

Using the compact notation for the (relative) product introduced in 1.6.2,
Condition [BO] can also be stated by the formula

[BO′] RR̄−1R ⊆ R.
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It is easy to check that the complement R̄ of a biorder is itself a biorder.
Accordingly, [BO′] is equivalent to

[BO′′] R̄R−1R̄ ⊆ R̄.

The interest for biorders stems in part from their numerical representa-
tion. Ducamp and Falmagne (1969) have shown that for finite sets X and Y ,
Condition [BO] was necessary and sufficient to ensure the existence of two
functions f : X → R and g : Y → R satisfying

xRy ⇐⇒ f(x) > g(y). (4.9)

The term “biorder” was coined by Doignon, Ducamp, and Falmagne (1984)
who extended this representation to infinite sets X and Y . The concept plays
an important role in psychometrics, where X and Y represent, respectively, a
set of subjects and a set of questions of a test of some ability. The notation
xRy formalizes the fact that subject x has solved question y. The r.h.s. of the
equivalence (4.9) is then interpreted as meaning: the ability f(x) of subject
x exceeds the difficulty g(y) of question y. In this context, the relation R is
coded as a rectangular 0-1 array and referred to as a Guttman’s scale (from a
famous paper of Guttman, 1944). Condition [BO] means that such a 0-1 array
never contains a sub-array of the form shown in Table 4.1.

Table 4.1. Forbidden pattern in a 0-1 array representing a biorder.

y y′

x 1 0

x′ 0 1

Condition [BO] enters as one of the defining conditions of other standard
order relations encountered in measurement theory and utility theory such as
the interval orders and the semiorders. The semiorders were introduced by
Luce (1956) (see also Scott and Suppes, 1958). The interval orders are due to
Fishburn (1970, 1985). For background and references, the reader is referred
to the Sources section at the end of the chapter.

For the rest of this section, we consider the full family of all the biorders
from X to Y as a family of subsets of a basic finite set Q = X × Y . Thus,
each of the biorders is regarded as a set of pairs. We shall prove the following
result, which is due to Doignon and Falmagne (1997).

4.2.2 Theorem. The family B of all the biorders between two finite sets
X and Y is a well-graded discriminative knowledge structure. Moreover, the
inner and outer fringes (cf. 4.1.6) of any relation R in B are specified by the
two equations:

RI = R \R R̄−1R, (4.10)

RO = R̄ \ R̄ R−1R̄. (4.11)
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Clearly, both ∅ and X × Y are biorders. Hence, B is a knowledge struc-
ture, which is also discriminative because {xy} is a biorder for all x ∈ X
and y ∈ Y . Checking that expressions for the inner and outer fringes are
indeed those specified Equations (4.10) and (4.11) is easy, and is left to the
reader (cf. Problem 7). To establish that the family B of all biorders between
two finite sets X and Y is well-graded, we shall establish Condition (iv) in
Theorem 4.1.7. The proof given in 4.2.5 relies on some auxiliary results.

Notice that for any relation R, the products R R̄−1 and R̄−1R are irreflex-
ive relations. Moreover, if R is a biorder, then for any positive integer n, the
nth power (R R̄−1)n of the product R R̄−1 is also irreflexive. We shall use the
following fact:

4.2.3 Lemma. If R is a biorder from a finite set X to a finite set Y , then we
necessarily have

R =
∞⋃
k=0

(R R̄−1)k R =
∞⋃
k=0

(
RI(RO)−1

)k
RI.

Proof. We show that the following inclusions hold:

R ⊆ ∪∞k=0(R R̄−1)k R ⊆ ∪∞k=0

(
RI(RO)−1

)k
RI ⊆ R.

The first inclusion is obvious: take k = 0 and use a convention from 1.6.2:
as R R̄−1 is a relation on X, we have (R R̄−1)0 equal to the identity relation
on X. To establish the second inclusion, suppose that xy ∈ (R R̄−1)k R for
some k ≥ 0. Because (R R̄−1)n is irreflexive for any positive integer n and
X is finite, we can assume without loss of generality that k is maximal. This
implies that each of the k + 1 factors R in the formula (R R̄−1)k R can be
replaced with RI while keeping xy in the full product. Indeed, if this were not
the case, such a factor R could be replaced with R R̄−1R and we would find
xy ∈ (R R̄−1)k+1R, contradicting the maximality of k. The fact that each of
the k factors R̄−1 in the formula (R R̄−1)k R can be replaced with (RO)−1 is
proved by similar arguments. We conclude that the second inclusion holds.

The third inclusion results from the biorder inclusion R R̄−1R ⊆ R to-
gether with RI ⊆ R and RO ⊆ R̄.

4.2.4 Theorem. Let R and S be two biorders from X to Y . Then

(RI ⊆ S and RO ⊆ S̄) =⇒ R = S.

Proof. The inclusion R ⊆ S follows from

xy ∈ R ⇒ x
(
RI(RO)−1

)k
RIy, for some k ≥ 0 (by Proposition 4.2.3)

⇒ x(S S̄−1)kSy (by hypothesis, RI ⊆ S and RO ⊆ S̄)

⇒ xy ∈ S (by Proposition 4.2.3).
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To prove the converse inclusion, notice that R̄ and S̄ are themselves
biorders. Moreover, (R̄)I = RO and (R̄)O = RI. This means that our hy-

pothesis can be translated as (R̄)I ⊆ S̄ and (R̄)O ⊆ (S̄). The argument used
above thus gives R̄ ⊆ S̄, that is S ⊆ R.

4.2.5 Proof of Theorem 4.2.2. In view of our discussion after the state-
ment, it only remains to show here that B is well-graded. This results from
Theorem 4.2.4 which establishes Condition (iv) of Theorem 4.1.7.

4.2.6 Remarks. a) The family B of biorders of Theorem 4.2.2 is neither
a knowledge space nor a closure space (in the sense of Definitions 2.2.2
and 3.3.1). Indeed, with a 6= b and a′ 6= b′, each of the four relations
{ab}, {a′b′}, {ab, a′b, a′b′}, {ab, ab′, a′b′} is a biorder from {a, b} to {a′, b′}, but

{ab} ∪ {a′b′} = {ab, a′b, a′b′} ∩ {ab, ab′, a′b′} = {ab, a′b′} /∈ B.

(In fact, {ab, a′b′} is a case of the forbidden subrelation represented by the
0-1 array of Table 4.1.)

b) As mentioned earlier, similar result have been obtained regarding the
wellgradedness of other families of order relations under a slightly more general
definition of a knowledge structure which does not require that the domain
of the knowledge structure be a state. Examples are the partial orders, the
interval orders and the semiorders (Doignon and Falmagne, 1997, and see
Problems 8-11).

4.3 Infinite Wellgradedness?

We now extend the concept of wellgradedness to the case where a state in a
gradation may be obtained as the ‘limit’ of the states that it includes in this
gradation. Thus, the concept of distance no longer applies. To simplify the
exposition, we limit consideration to discriminative knowledge structures2.

4.3.1 Definition. An ∞-gradation in a discriminative knowledge structure
(Q,K) is a learning path C such that for any K ∈ C \ {∅}, we have:

either K = K ′ ∪ {q}, for some q ∈ K and K ′ ∈ C \ {K}, (4.12)

or K =
⋃
{L ∈ C L ⊂ K}. (4.13)

When the knowledge structure (Q,K) is finite, the ‘limit’ situation de-
scribed by Equation (4.13) does not occur and the ∞-gradations are just
gradations in the sense of Definition 4.1.3.

2 Extending the concepts and results to non necessarily discriminative structures
is straightforward; cf. Problem 12.
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4.3.2 Example. As in 3.4.3, let O be the knowledge space formed by the
collection of all open subsets of R. Then any two states O,O′ in O with O ⊂ O′
belong to a∞-gradation. In fact, any maximal chain C of states containing O
and O′ must be a∞-gradation. (By Hausdorff maximality principle, cf. 1.6.10,
there exists at least one such maximal chain.) Indeed, suppose that some K in
C does not satisfy Equation (4.13). Pick some item q in K \⋃{L ∈ C L ⊂ K}.
ThenK\{q} = K ′ ∈ C since

⋃{L ∈ C L ⊂ K} ⊂ K ′ ⊂ K, withK = K ′∪{q},
and K satisfies Equation (4.12).

Defining well-graded structures in the infinite case requires more powerful
tools than the finite sequences used in 2.2.2. A suitable device is suggested
by the formulation in Theorem 4.1.7 (iii) (cf. Remark 4.1.8(b)). We begin by
generalizing the concept of a path connecting two states.

4.3.3 Definition. A family D of states in a knowledge structure (Q,K) is a
bounded path connecting a state K and a state L if it contains K and L and
the following three conditions hold: for all distinct D and E in D,

(1) K ∩ L ⊆ D ⊆ K ∪ L;

(2) either D \ L ⊆ E \ L and D \K ⊇ E \K,
or D \ L ⊇ E \ L and D \K ⊆ E \K;

(3) either (a) ∃F ∈ D \ {D}, ∃q ∈ D \ F : F ∪ {q} = D;

or (b)


D \K = ∪{G \K G ∈ D, G \K ⊂ D \K},
and

D \ L = ∪{G \ L G ∈ D, G \ L ⊂ D \ L}.

The knowledge structure is ∞-well-graded if any two of its states are con-
nected by a bounded path. When the knowledge structure is finite, this def-
inition of wellgradedness becomes identical to that in 2.2.2: Case (3)(b) does
not arise, and Theorem 4.1.7(ii) applies.

4.3.4 Example. Examples of bounded paths are easy to manufacture. In the
knowledge space formed by the open subsets of R (cf. 4.3.2), consider the
two states ]a, b[ and ]c, d[, with a < c < b < d. Define a bounded path A

connecting these two states by

A = {]a, b[, ]c, d[} ∪ {A(x) x ∈ R}

containing all the open intervals

A(x) = ]g(x)(c− a) + a, g(x)(d− b) + b[ ,

where g : R→]0, 1[ is a continuous, strictly increasing function, satisfying

lim
x→−∞

g(x) = 0, lim
x→+∞

g(x) = 1.
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(Take for example g(x) = (1 + e−x)−1.) The family A is a bounded path
connecting ]a, b[ and ]c, d[. We have

a < g(x)(c− a) + a < c < b < g(x)(d− b) + b < d,

verifying Condition (1) in 4.3.3. Notice that we also have

A(x)\ ]c, d[ = ]g(x)(c− a) + a, c],

A(x)\ ]a, b[ = [b, g(x)(d− b) + b[ .

This yields for any x ≤ y

A(y)\ ]c, d[ ⊆ A(x)\ ]c, d[ and A(y)\ ]a, b[ ⊇ A(x)\ ]a, b[ ,

which verifies Condition (2) in 4.3.3. Finally, we observe that

A(x)\ ]a, b[ = ∪z<x
(
A(z)\ ]a, b[

)
,

A(x)\ ]c, d[ = ∪x<z
(
A(z)\ ]c, d[

)
,

establishing Condition (3).

As a partial extension of Theorem 4.1.9 in the case of possibly infinite
knowledge spaces, we have:

4.3.5 Theorem. For any discriminative knowledge space (Q,K), the follow-
ing two conditions are equivalent:

(i) (Q,K) is ∞-well-graded;
(ii) all the learning paths in (Q,K) are ∞-gradations.

Moreover, Conditions (i) and (ii) are implied by

(iii) for any two distinct states K and L, we have

(K 4 L) ∩KF 6= ∅.

Proof. (i) ⇒ (ii). Let C be any learning path, and take any state K in
C \ {∅}. Defining U = ∪{L ∈ C L ⊂ K}, assume that U 6= K. Notice that
U ∈ C follows from the closure of K under union and the maximality of C.
By (i), there is a bounded path D from U to K. Since U ⊂ K, we must
have U ⊆ D ⊆ K for all D ∈ D. Suppose that there is some D in D such
that U ⊂ D ⊂ K. Then C ∪ {D} is a chain, which is impossible because
C is maximal. Thus D = {U,K}. Since D is a bounded path, we derive the
existence of q ∈ K such that U∪{q} = K. This proves that C is a∞-gradation.

(ii) ⇒ (i). Let K,L ∈ K, thus also K ∪ L ∈ K. Take a learning path C1

containing K and K ∪ L, and a learning path C2 containing L and K ∪ L.
Then

{D ∈ C1 K ⊆ D ⊆ K ∪ L} ∪ {E ∈ C2 L ⊆ E ⊆ K ∪ L}
is a bounded path from K to L.



72 4 Well-Graded Knowledge Structures

(iii) ⇒ (ii). Assume again that C is a learning path, K ∈ C \ {∅}, and
U = ∪{L ∈ C L ⊂ K} 6= K. Thus U ∈ K and U ∈ C. By (iii), there is an
item q in (K \ U) ∩ UF. Then U ∪ {q} is a state that must be equal to K.
This shows that C is a ∞-gradation.

Example 4.3.2 shows that for discriminative spaces, Condition (iii) in The-
orem 4.3.5 does not follow from Conditions (i) and (ii). (Because in this case
the outer fringe of any open interval of R is empty.) There are also ordinal
spaces that can be used as similar counter-examples; for instance, take the set
R of real numbers with its usual order.

4.3.6 Theorem. Any ordinal space (Q,K) is ∞-well-graded.

Proof. We establish Condition (ii) in Theorem 4.3.5. Let K be a state of
some learning path C in (Q,K). Then U = ∪{L ∈ C L ⊂ K} is a state of C.
It suffices to show that K \ U contains at most one item. If p and q were
two distinct items in K \ U , we could find a state M with either p ∈ M and
q /∈M , or q ∈M and p /∈M . A contradiction follows by considering the state
U ∪ (M ∩K).

4.4 Finite Learnability

4.4.1 Example. Consider the discriminative knowledge structure

J =
{
∅, {a}, {a, b, c}, {a, b, d}, {a, c, d}, {a, b, c, d, e}

}
. (4.14)

Suppose that some individual in state {a} wishes to acquire item d. Since
there is no intermediate state between {a} and {a, b, d} or {a, c, d}, this can
only be done by mastering simultaneously either b and d, or c and d.

This situation does not arise in the knowledge structure

J ∪ {{a, b}},

in which the individual may progress from state {a} to a state containing d
by steps involving one new item at a time. In learning spaces, which are finite
structures, the issue is taken care of by Axiom [L1], which requires that the
items be learnable one at a time. We consider a more general situation here.
The next definition applies to any discriminative knowledge structure, finite
or not. It allows for the possibility that the student must learn several items
simultaneously. But the number of such items is finite and bounded.

4.4.2 Definition. A discriminative structure is finitely learnable if there is a
positive integer l such that, for any state K and any item q /∈ K, there exists
a positive integer h and a chain of states K = K0 ⊂ K1 ⊂ · · · ⊂ Kh satisfying

(i) q ∈ Kh;
(ii) d(Ki,Ki+1) ≤ l, for 0 ≤ i ≤ h− 1.
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A finitely learnable knowledge structure (Q,K) necessarily has a smallest
number l satisfying these conditions, which is called the learnstep number of
(Q,K). We write then

lst (K) = l.

With J defined by (4.14), we have, for example

lst (J ∪ {{a, b}}) = 2.

Indeed, from state {a, b, d}, item e can be mastered only by mastering simul-
taneously items c and e. Note that any well-graded structure has learning step
number 1 (see Problem 16).

4.4.3 Remarks. a) Obviously, any finite knowledge structure is finitely learn-
able. However, some infinite knowledge structures are also finitely learnable.
For example, for every infinite set Q, we clearly have lst (2Q) = 1: for any
set K ⊂ Q and q ∈ Q \K, we have K ⊂ Kh = K ∪ {q} with h = l = 1.

b) The ordinal space on R derived (in the sense of Definition 3.8.4) from
the usual order of the reals is not finitely learnable.

c) A finite knowledge space (Q,K) may satisfy lst (K) = 1 without being
well-graded. An example is the structure

K = {∅, {a}, {a, b}, {a, b, c}, {a, c, d}, {a, b, c, d}},

in which there is no tight path between {a} and {a, c, d}.

4.5 Verifying Wellgradedness for a ∪-Closed Family

In Section 3.2, we introduced the concept of a relation R on 2Q \ {∅} capable
of faithfully representing a particular knowledge space on a domain Q. In
practice, such a relation R can be constructed by interviewing expert teachers,
or by assessment statistics (cf. the equivalence discussed in Subsection 3.2.3
on page 45). Chapter 15 is devoted to the description of a relevant algorithm,
named QUERY. An application of QUERY consists in a step-by-step construction
of the relation R, the final output delivering the knowledge space defined by R

(see Theorem 3.2.1). Our goal, however, is to obtain a learning space, rather
than just a knowledge space, and there is no guarantee that a knowledge space
constructed by the above procedure is well-graded.

There are two possible methods for solving this problem. One is to modify
QUERY so that only learning spaces are produced on each step. We analyze
this possibility in Section 16.2, where an algorithm performing the required
construction can be found.

A rather different method relies on first building a knowledge space S, for
example by a straightforward application of QUERY. If S is not well-graded,
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we then correct S by the addition of a minimal number of states ensuring
wellgradedness (while preserving ∪-closure). Since any knowledge space is
specified by its base, a typically much smaller set, it is natural to think of
suitably expanding the base of S. However, some theoretical investigations
are needed to assess the value of this approach, and to extend it. Section 16.3
is devoted to this topic. Here, we consider the more general case in which
the generating subfamily is not necessarily the base. In order to cover these
more general results, we introduce a restricted concept of span (the latter was
defined in 3.4.1).

4.5.1 Definition. The span† of a family of sets G is the collection F of all sets
X such that X = ∪H for some nonempty H ⊆ G. We write then S†(G) = F,
and we say that G spans† F.

Notice that, while S(G) is always a knowledge space, S†(G) is a knowledge
space only if ∅ ∈ G.

The discussion at the beginning of this section motivates the four problems
below for a family G of finite sets.

4.5.2 Four Problems.

A. Find necessary and sufficient conditions for G to be spanning† a well-
graded, partially ∪-closed family of sets (see 2.2.6 for ‘partially ∪-closed’).

B. Find such conditions when the spanned family is a learning space. (These
conditions should be simpler than in Problem A.)

C. Provide efficient algorithms for testing the conditions on a family G un-
covered in A and B.

D. Supposing that some family G fails to satisfy the conditions in Problems A
and B, provide algorithms for modifying G in some optimal sense to yield
a family G′ satisfying such conditions.

Problems A and B are solved in this section and Problems C and D in Sec-
tion 16.3. Except for a couple of additional results in this section, we follow
closely Eppstein, Falmagne, and Uzun (2009).

The following lemma allows us to infer the wellgradedness of a family from
that of its base or of any of its spanning subfamilies.

4.5.3 Lemma. The span† of a finite well-graded family is well-graded.

Proof. Let S†(G) be the span† of some finite wg-family G. By the same
argument as in Lemma 2.2.3, we only need to prove that there is a tight path
from K to L for K, L ∈ S†(G) satisfying K ⊂ L. By definition of the span†,
there exist nonempty K,L ⊆ G such that K = ∪K and L = ∪L. First notice
that K4L must be finite (so the distance between K and L is well defined).
Indeed, G being finite, K and L are unions of finite numbers of elements of
G, and G being well-graded, the distance between any two of its members is
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finite. Second, take some K ′ in K and some L′ in L such that L′ \ K 6= ∅.
There is some tight path from K ′ to L′, say K ′ = K ′0, K ′1, . . . , K ′h = L′. Let
K ′j be the first element in the sequence that contains an element of L \ K.
Then K ′j \ K consists of one element lying in L. Setting K1 = K ∪ K ′1, we

begin the construction of a tight path in S†(G) from K to L.
An induction completes the proof.

It is easily verified that a similar result does not hold in general for the
span of a well-graded family. Moreover, the finiteness assumption made in
Lemma 4.5.3 cannot be dispensed with, as shown by the next example.

4.5.4 Example. Form a family G by taking the empty set and each one-
element subset of N. Both the span and the span† of G are equal to the
collection of all subsets of N. Notice that the family G is well-graded, while
S†(G) is not.

Next we provide a characterization of families whose spans are well-graded.
This is the first of the two main results in this section, and a solution to
Problem B in 4.5.2.

4.5.5 Theorem. Suppose that G is a finite family of sets and let S(G) be its
span. Then the two following conditions are equivalent:

(i) S(G) is a well-graded family;
(ii) for each q in ∪G and each set G in G which is minimal for the property of

containing q, the set G \ {q} is the union of some subfamily of G.

Theorem 4.5.5 is in the spirit of a result of Koppen (1998). We give in
Theorem 5.4.1 a version of Koppen’s result in the infinite case3. Note that
Theorem 4.5.5 is no longer true if we replace the span by the span† and
assume that the family G does not contain the empty set (cf. our Counterex-
ample 5.4.2).

Proof. (i) ⇒ (ii). Assume S(G) is well-graded, and let q ∈ ∪G, G ∈ G be as
in (ii). By assumption, there is a tight path K0, K1, . . . , Kh in S(G) from ∅
to G. Because of the minimality of G, we have Kh−1 = G \ {q}. Thus G \ {q}
is a union of elements of G.

(ii) ⇒ (i). In view of Lemma 2.2.3, we need only consider elements K and
L in S(G) satisfying K ⊂ L, and prove that there is a tight path in S(G)
from K to L. Pick q in L \ K. There exists at least one set G of G such
that q ∈ G ⊆ L. By the finiteness of G, we may assume that G is minimal
with respect to those properties. Our assumption implies that G\{q} belongs
to S(G). We have then either K ⊂ K ∪ G ⊆ L with |K ∪ G| = |K| + 1 or
K ⊂ K ∪ (G \ {q}) ⊆ L. By induction, there exists a tight path from K to L.

The base of a well-graded knowledge space need not be well-graded.

3 Koppen’s result is the equivalence (i) ⇔ (ii) of Theorem 5.4.1.



76 4 Well-Graded Knowledge Structures

4.5.6 Example. The well-graded knowledge space

F = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {c, d}, {a, b, c},
{a, c, d}, {b, c, d}, {a, b, c, d}, {a, b, c, d, e}} (4.15)

has the base {{a}, {b}, {c}, {c, d}, {a, b, c, d, e}}, which is not well-graded.
Moreover, F has two different minimal well-graded subfamilies spanning F:

{{a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {c, d}, {a, b, c},
{a, c, d}, {a, b, c, d}, {a, b, c, d, e}}, (4.16)

{{a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {c, d}, {a, b, c},
{b, c, d}, {a, b, c, d}, {a, b, c, d, e}}. (4.17)

Other minimal well-graded subfamilies spanning F are obtained by first adding
∅ to the base, and then other subsets as needed.

4.5.7 Example. The base of a knowledge space which is closed under inter-
section is not necessarily well-graded. Indeed, consider the knowledge space

F = {∅, {a}, {b}, {d}, {a, b}, {a, d}, {b, d}, {a, b, c}, {a, b, d},
{a, b, c, d}, {a, b, c, d, e}},

whose base is {{a}, {b}, {d}, {a, b, c}, {a, b, c, d, e}}.

We turn to the second of the two main results of this section. As a conse-
quence of Lemma 4.5.3, we derive a characterization of families whose spans†

are well-graded.

4.5.8 Theorem. Let F be a partially ∪-closed family spanned† by some finite
family G. Then F is a wg-family if and only if, for any two distinct sets G and
H in G, there is a tight path in F from G to G ∪H. If G contains the empty
set, then F is well-graded if and only if there is a tight path in F from ∅ to
H for any H in G.

This result provides another solution to Problems A and B in 4.5.2. The
solution is not ideal, however, since it refers to a tight path in the spanned†

family F and involves the state G ∪ H which does not necessarily belong to
the spanning† family G. (See the Open Problem 18.2.4 in Chapter 18 in this
connection.)

Proof. As F is well-graded and contains G, the necessity is clear for both
statements. To establish sufficiency in the first statement, we notice that the
argument in the proof of Lemma 2.2.3 also works for partially union-closed
families. That is, we consider K, L in F and establish the existence of a
tight path from K to L in F only under the assumption K ⊂ L. There exist
subfamilies K and L of G such that K = ∪K and L = ∪L. Take arbitrarily G
in K and H in L with nevertheless H 6⊆ K. By our assumption, there exists a
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tight path G = G0, G1, . . . , Gk = G∪H in F from G to G∪H. Let j be the
smallest index such that Gj \K 6= ∅. Then Gj \K = {q}, for some q in ∪G.
We have thus K ⊂ K ∪ {q} ⊆ L, with K ∪ {q} ∈ F. An induction completes
the proof that F is well-graded.

We now show that if ∅ ∈ G and G satisfies the latter condition of the
statement, then there is a tight path in F from G to G ∪H for any G and H
in G. Thus, the sufficiency of the second statement follows from that in the
first statement. Indeed, let H0 = ∅, H1, . . . , Hh = H be a tight path in F.
It is easily seen that, after removal of identical terms if need be, the sequence
G ∪ H0 = G, G ∪ H1, . . . , G ∪ Hh = G ∪ H is a tight path in F from G to
G ∪H.

4.6 Original Sources and Related Works

The concepts of learning paths and well-graded knowledge structures were
introduced by Falmagne and Doignon (1988b) in the finite case. As men-
tioned earlier in this book (see the comments after Definition 2.2.1 on page
26), learning spaces are dual to the so-called ‘(intersection) antimatroids’ or
‘convex geometries’ in the sense of Edelman and Jamison (1985). Specifically,
a finite closure space is a convex geometry exactly when its dual (Q,K) is a
knowledge space in which all learning paths are gradations4. Definition 4.3.3
extends the concept of wellgradedness to the infinite case. This definition is
a natural one in the context of knowledge structures in education, but would
probably not be suitable for abstract convexity.

There are differences in the way we cast the concept of wellgradedness in
this book as compared to Doignon and Falmagne (1999). The latter exposi-
tion took also care of the non-discriminative case, using notions (cf. Defini-
tion 2.1.5) while we use items here.

The application of the wellgradedness concept to families of relations, espe-
cially to biorders and semiorders, is taken from Doignon and Falmagne (1997)
(see also Falmagne and Doignon, 1997). Ovchinnikov (1983) was a forerunner
for the special case of partial orders. Biorders appeared under other names in
the literature: Guttman scales (Guttman, 1944), Ferrers relations5 (Riguet,
1951; Cogis, 1982), bi-quasi-series (Ducamp and Falmagne, 1969). Among
the more recent papers, we mention Doignon, Ducamp, and Falmagne (1984)
(where the term ‘biorder’ originated), and Doignon, Monjardet, Roubens, and
Vincke (1986). Two important special cases of biorders are the semiorders6

introduced by Luce (1956) (see also Scott and Suppes, 1958) and the interval

4 Additional characterizations of finite, well-graded knowledge spaces can be de-
rived from Edelman and Jamison (1985).

5 From Norman Macleod Ferrers, a nineteen century British mathematician.
6 We define those relations in Problem 9.
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orders due to Fishburn (1970). For an introduction to these concepts and their
applications in the social sciences, the reader is referred to Roberts (1979),
Roubens and Vincke (1985), Suppes, Krantz, Luce, and Tversky (1989), or
Pirlot and Vincke (1997). Purely mathematical expositions can be found in
the monographs by Fishburn (1985) and Trotter (1992).

Section 4.5 follows (with some additions) Eppstein, Falmagne, and Uzun
(2009), a paper motivated by the problems encountered in building a learning
space empirically. Techniques for developing a knowledge space by questioning
experts or by assessment statistics have been available for quite some time,
based on theoretical results such as Theorem 3.2.1. However, as argued in
Section 3.1, such a knowledge space is not necessarily the final step. It must
still be tested for wellgradedness, and corrected in some optimal fashion if the
test turns out to be negative. This leads to the four problems spelled in 4.5.2.
The first two are solved in Section 4.5, and the last two in Section 16.3. The
issues of constructing a knowledge space or a learning space in practice are
considered again in Chapter 11 and, especially, Chapters 15 and 16.

Problems

1. Check whether the equivalence between the three statements in Theo-
rem 4.1.9 still holds when the axiom of closure under union is replaced by
Axiom [JS] of Problem 6 from Chapter 2. Prove your result.

2. Suppose that a knowledge structure is well-graded (resp. 1-connected,
1-learnable, i.e. has learnstep number equal to 1). Does that imply that
the dual structure is also well-graded (resp. 1-connected, 1-learnable)?

3. Definition: We call property heritable when it necessarily holds for all
the children of a knowledge structure which satisfies the property. Are
wellgradedness, 1-connectedness, upgradability, and downgradability her-
itable properties?

4. Let K be a family of sets (infinite or not, containing only finite subsets or
not) which is well-graded in the sense of Definition 2.2.2 (or 4.1.3). Show
that K is discriminative if and only if | ∩K| ≤ 1. Is there a similar result
for a family assumed to be ∞-well-graded (Definition 4.3.3)?

5. Prove the implication (i) ⇒ (ii) in Theorem 4.1.7.

6. Prove the implication (ii) ⇒ (iii) in Theorem 4.1.9.

7. Prove that the inner and outer fringes of a biorder R in the family of
all the biorders between two finite sets X and Y are defined by the two
equations (4.10) and (4.11).

8. Consider the collection P of all partial orders (cf. 1.6.1) on a finite set X,
regarded as sets of pairs. Describe the inner and outer fringes of any partial
order on X. Prove that P is well-graded.
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9. A semiorder on a set X is an irreflexive biorder R between X and X
satisfying the following additional condition:
[S] RR R̄−1 ⊆ R.
Working with the collection S of all semiorders on a finite set X, regarded
as sets of pairs, compute the inner and outer fringes of a given semiorder
on X (cf. Doignon and Falmagne, 1997).

10. (Continuation. Difficult.) Prove that S is well-graded (see Doignon and
Falmagne, 1997).

11. Would the results regarding wellgradedness in Problems 8 and 10 still
hold if we drop the requirement that X is finite? Provide proofs of your
responses.

12. Formulate the definitions and the results in the infinite case for non nec-
essarily discriminative structures (cf. Section 4.3).

13. For the knowledge space O of Example 4.3.4, construct a bounded path
connecting the two states {x a < x < b or c < x < d} and ]e, f [, with
a < e < b < f < c < d.

14. Prove the following equality for the fringe of a state K of a knowledge
structure (Q,K) (cf. Definition 4.1.6):

KF =
(
∪N(K, 1)

)
\
(
∩N(K, 1)

)
.

15. Does a gradation C in a discriminative knowledge structure (Q,K) nec-
essarily satisfy the following property? For K ∈ C \ {Q}, (i) or (ii) must
hold, with:
(i) K = K ′ \ {q}, for some K ′ ∈ C and q ∈ K ′;
(ii) K = ∩{L ∈ C K ⊂ L}.

16. Verify that the learnstep number of a well-graded knowledge structure is
necessarily equal to 1.
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Surmise Systems

When a knowledge structure is a quasi ordinal space, it can be faithfully
represented by its surmise relation (cf. Theorem 3.8.3). In fact, as illustrated
by Example 3.7.4, a finite ordinal space is completely recoverable from the
Hasse diagram of the surmise relation. However, for knowledge structures
in general, and even for knowledge spaces, the information provided by the
surmise relation may be insufficient. In this chapter, we study the ‘surmise
system,’ a concept generalizing that of a surmise relation, and allowing more
than one possible learning ‘foundation’1 for an item2. One of the two main
results of this chapter is Theorem 5.2.5 which establishes, in the style of
Theorem 3.8.3 for quasi ordinal spaces, a one-to-one correspondence between
knowledge spaces and surmise systems.

The surmise systems are closely related to the AND/OR graphs encoun-
tered in artificial intelligence. A section of this chapter is devoted to clarifying
the relationship between the two concepts. This chapter also describes, in the
form of Theorem 5.4.1, the relationship between well-graded knowledge spaces
and a particular kind of surmise systems. This is the second main result of
this chapter. Other highlights are: a generalization of the concept of a Hasse
diagram, and a study of intractable ‘cyclic’ foundations which leads us to
formulate conditions precluding such situations.

5.1 Basic Concepts

5.1.1 Example. Consider the knowledge structure

H =
{
∅, {a}, {b, d}, {a, b, c}, {b, c, e}, {a, b, d},

{a, b, c, d}, {a, b, c, e}, {b, c, d, e}, {a, b, c, d, e}
}

(5.1)

1 We also use the terms ‘clause for an item’ or ‘background of an item’ as synonyms
of ‘foundation for an item.’

2 The surmise relation only permits one foundation for any item q, which is formed
by all the items preceding q in the surmise relation.

J.-C. Falmagne, J.-P. Doignon, Learning Spaces, 
DOI 10.1007/978-3-642-01039-2_5, © Springer-Verlag Berlin Heidelberg 2011 
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on the domain Q = {a, b, c, d, e}. This knowledge structure is a discriminative
knowledge space, with a surmise (or precedence) relation - represented in
Figure 5.1 by its Hasse diagram (the relation - was defined in 3.7.1).

e

cd

ab

Figure 5.1. Hasse diagram of the surmise
relation of the knowledge structure H spec-
ified by Equation (5.1).

Note that {q ∈ Q q - b} = {b}: there are no items in Q that must be
mastered before b. This information, however, gives a distorted picture of the
situation. Examining Equation (5.1) leads to the conclusion that b can be
learned only if d was acquired simultaneously, or both a and c, or both c
and e. Indeed,

{b, d}, {a, b, c}, {b, c, e}
are the three atoms at b, that is, the three minimal states of H containing b.

In a quasi ordinal space K with surmise relation -, the situation is simpler.
For any item q, there is always exactly one atom at q, namely ∩Kq, which
contains all the precedents of q in - (cf. Theorem 3.6.7 and Definition 3.8.1).
In fact, considering the equivalence r - q ⇔ r ∈ ∩Kq, the full information
concerning the quasi ordinal space is obtained by listing the unique atom ∩Kq

at each question q. In the case of a knowledge space in general, however, there
may be several atoms at a question, or possibly no atoms (as in Examples 3.4.3
or 3.4.9). This is illustrated by the knowledge space H of Equation (5.1), whose
atoms at each item are listed in Table 5.1. The items b and c have three and
two atoms, respectively.

Table 5.1. Items and their atoms in the knowledge space of Equation (5.1).

Items Atoms

a {a}

b {b, d}, {a, b, c}, {b, c, e}

c {a, b, c}, {b, c, e}

d {b, d}

e {b, c, e}
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This example motivates the generalization of the surmise relation into a
‘surmise function’ which associates, to each item q of a domain Q, a collection
of subsets of Q called the ‘clauses’ for q. Each of these clauses represents
a possible ‘foundation’ for the mastery of item q. The concept of a surmise
function is formalized by four conditions consistent with this interpretation.
First, there must be at least one clause for each item. Second, we ask that
each clause for an item contains this item. Third, each item in any clause C
for an item has itself a clause included in C. (We give a pictorial illustration
of this axiom in Figure 5.3). Finally, different clauses for the same item must
be incomparable with respect to set inclusion.

We introduce the concepts of a surmise function and its clauses in the next
definition. Note that we do not assume the existence of a knowledge structure.
However, it turns out that any surmise function uniquely defines a granular
knowledge space (cf. Theorem 5.2.5). (We recall from Definition 3.6.1 that a
knowledge space K is granular when for each state K in K and each item q
in K there exists an atom A at q with q ∈ A ⊆ K.)

5.1.2 Definition. Let Q be a nonempty set of items, and let σ be a function

mapping Q into 22Q . Thus, every value of σ is a family of subsets of Q. We
say that σ is an attribution (function) on the set Q if this family is always
nonempty, that is

(i) if q ∈ Q, then σ(q) 6= ∅.

For each q ∈ Q, any C ∈ σ(q) is said to be a clause for q, or synonymously,
a foundation for q (in σ). We formulate three additional conditions: for all
q, q′ ∈ Q, and C,C ′ ⊆ Q,

(ii) if C ∈ σ(q), then q ∈ C;
(iii) if q′ ∈ C ∈ σ(q), then C ′ ⊆ C for some C ′ ∈ σ(q′);
(iv) if C,C ′ ∈ σ(q) and C ′ ⊆ C, then C = C ′.

When all four conditions are satisfied, the pair (Q, σ) is a surmise system and
the function σ is called a surmise function on Q. A surmise system (Q, σ) is
discriminative if whenever σ(q) = σ(q′) for some q, q′ ∈ Q, then q = q′. In
such a case, the surmise function σ is also called discriminative.

5.1.3 Remarks. Condition (i) is reasonable in view of the intended meaning
of the concept, but note that we can have σ(q) = {∅}. (See Problem 1.)
Condition (ii) is introduced for convenience and plays a minor role. Condition
(iii) is natural if a clause for an item q is interpreted as a possible minimal
foundation for the mastery of q: if q′ is in a clause C for q, there must be
a path to the mastery of q′ within C, and so there must be a foundation
for q′ included in C. Condition (iv) ensures that the conceptual foundations
formalized by the clauses are not redundant: suppose that C is a foundation
of q, and C ′ is also a clause for q, with C ′ included in C; then C ′ must be
equal to C, since, otherwise, C would not be a minimal foundation for q.
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Surmise functions generalizes quasi orders. In particular, Conditions (ii)
and (iii) correspond to reflexivity and transitivity, respectively. Actually, ex-
cept for a trivial change in the encoding, any binary relation is a special case
of an attribution.

5.1.4 Definition. Let R be any binary relation on a nonempty set Q. Define
an attribution that has exactly one clause for each item q of Q by the equation:

σ(q) =
{
{r ∈ Q rRq}

}
.

We say then that R is cast as the attribution σ. Notice that σ and R contain
exactly the same information. It is easily checked that

(i) R is reflexive iff σ satisfies Condition (ii) of a surmise function;
(ii) R is transitive iff σ satisfies Condition (iii) of a surmise function3.

Thus, the collection of all surmise functions on Q encompasses the collection of
all quasi orders on Q. Also, the collection of all attributions on Q encompasses
the collection of all binary relations on Q.

5.1.5 Example. To get a pictorial display of an attribution in the case of a
small finite set Q, we extend the standard conventions used for the graph of a
binary relation. For instance, Figure 5.2 displays the graph of the attribution
σ on Q = {a, b, c, d, e} with

σ(a) =
{
{a, b, c}, {c, d}

}
, σ(b) =

{
{e}
}
,

σ(c) =
{
{c}
}
, σ(d) =

{
{d}
}
, σ(e) =

{
{a, d}, {b}

}
.

a

cb d

e
Figure 5.2. Graph of the attribution in
Example 5.1.5.

The rules governing such a representation are as follows. Consider a clause
C for some q in Q and suppose that C contains q and at least one item q′ 6= q.
Then C is represented by an ellipse surrounding all the elements of C but q,
and linked to q by a solid segment. This is illustrated in Figure 5.2 by the

3 Problem 3 asks the reader to verify the equivalence (ii).
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ellipse surrounding the points b and c and linked to the point a by a solid
segment. Indeed, {a, b, c} is a clause for a in the attribution σ. If C is a clause
for q which does not contain q, but contains some q′ 6= q, the representation
of that clause is the same, but the segment linking q to the ellipse is dashed.
Four examples of such a linking are drawn in Figure 5.2. Finally, if a clause
for q contains only q, then no ellipse is drawn, as in the case of the point c
of the figure because we have σ(c) =

{
{c}
}
,. Note that there is no dashed

lines in the representation of a surmise function because of Condition (ii) in
Definition 5.1.2 : for any item q, any clause C for q contains q.

Such figures may become very intricate4. On the other hand, a given partial
order can be encoded, in a minimal efficient way, by its Hasse diagram. Surmise
functions generalize quasi orders and thus partial orders. This evokes the
potential concept of a ‘Hasse system’ capable of faithfully summarizing the
information in a surmise system. Section 5.5 will be devoted to a precise
definition of such a concept and some of its consequences.

Figure 5.3, a display of the kind just introduced, illustrates Condition (iii)
in the definition of a surmise system (see 5.1.2).

Figure 5.3. Pictorial representation of
Condition (iii) in Definition 5.1.2. We have
q′ ∈ C ∈ σ(q) and C′ ∈ σ(q′) with C′ ⊆ C.

5.2 Knowledge Spaces and Surmise Systems

The following four definitions and examples pave the way to a fundamental
relationship between knowledge spaces and surmise systems that will be made
precise in Theorem 5.2.5.

5.2.1 Definition. Let (Q,K) be a granular knowledge structure (cf. 3.6.1).

Accordingly, any item q has at least one atom. Let σ : Q→ 22Q be a function
defined by the equivalence:

C ∈ σ(q) ⇐⇒ C is an atom at q,

with C ⊆ Q and q ∈ Q. It is easily seen that σ is a surmise function on Q.
We shall say that σ is the surmise function on Q derived from (Q,K).

4 We invite the reader to graph the surmise function of the knowledge structure of
Example 5.1.1, whose atoms are given in Table 5.1.

q

q’
C’

C
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Note that if a granular knowledge structure (Q,K) is closed under inter-
section, its derived surmise function σ has only one clause for each item. So,
there exists a well-defined relation R on Q that is cast as σ in the sense of
5.1.4. If the knowledge structure (Q,K) is a quasi ordinal space, this relation
R is exactly the quasi order derived from (Q,K) (see Definition 3.8.4).

5.2.2 Example. Applying the construction of Definition 5.2.1 to the knowl-
edge structure H of Equation (5.1), we obtain from Table 5.1 the surmise
function σ specified by:

σ(a) =
{
{a}
}
, σ(b) =

{
{b, d}, {a, b, c}, {b, c, e}

}
,

σ(c) =
{
{a, b, c}, {b, c, e}

}
, σ(d) =

{
{b, d}

}
, σ(e) =

{
{b, c, e}

}
.

5.2.3 Definition. Any attribution σ on a set Q defines a knowledge space
(Q,K) by the equivalence

K ∈ K ⇐⇒ ∀q ∈ K, ∃C ∈ σ(q) : C ⊆ K. (5.2)

The verification that (Q,K) is indeed a knowledge space is left to the reader
(Problem 2). In such a case, we say that the attribution σ produces the knowl-
edge space (Q,K), or equivalently, that (Q,K) is derived from the attribution
σ on Q.

When (Q, σ) is a surmise system, its derived knowledge structure is always
a granular knowledge space. In particular, each clause for an item q is an atom
at q in K (cf. Definition 5.1.2). Thus, the states in K are unions of clauses,
and conversely, any union of clauses is a state.

This construction of (Q,K) from (Q, σ) is a natural outcome of our inter-
pretation of surmise systems: a set K of items forms a knowledge state when
K includes, for each of its items q, a minimal foundation leading to q.

5.2.4 Example. With the surmise function obtained in Example 5.2.2, we
verify that the set K = {a, b, c, e} satisfies the r.h.s. of the equivalence (5.2)
and so is a knowledge state. Indeed, remark that

{a} ∈ σ(a) and {a} ⊆ {a, b, c, e},
{a, b, c} ∈ σ(b) and {a, b, c} ⊆ {a, b, c, e},
{a, b, c} ∈ σ(c) and {a, b, c} ⊆ {a, b, c, e},
{b, c, e} ∈ σ(e) and {b, c, e} ⊆ {a, b, c, e}.

(Notice that we could have used the clause {b, c, e} for b.) On the other hand,
the subset {a, c, d, e} is not a state because it does not include a clause for e.
The family K of all states is easily constructed and coincides with the original
family H in Example 5.1.1.

In fact, the constructions of σ in Definition 5.2.1 and of K in Definition 5.2.3
are mutual inverses. We have the following general result.
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5.2.5 Theorem. There is a one-to-one correspondence between the collection
of all granular knowledge spaces on a set Q and the collection of all surmise
functions on Q. It is defined, for all granular knowledge space K and surmise
function σ, by the following equivalence, where S ⊆ Q and q ∈ Q:

S is an atom at q in K ⇐⇒ S is a clause for q in σ. (5.3)

Under this correspondence, the image of a discriminative, granular knowledge
space is a discriminative surmise function.

Proof. Let s be the function from the collection Kg of all granular knowledge
spaces on a set Q to the collection Fs of all surmise functions on Q, defined
as in Definition 5.2.1 by the equivalence (where K ∈ Kg and σ ∈ Fs)

s(K) = σ ⇐⇒ ∀q ∈ Q : σ(q) = {S ∈ 2Q S is an atom at q}. (5.4)

Suppose now that K and K′ are two distinct granular knowledge spaces on
Q, with σ = s(K) and σ′ = s(K′). Then, K and K′ must have different bases.
In particular, there must be an item q such that the set of all atoms at q
in K differs from the set of all atoms at q in K′ (Theorems 3.6.6 and 3.4.8).
We thus have σ(q) 6= σ′(q), and therefore σ 6= σ′. We conclude that s is an
injective mapping of Kg into Fs. The mapping s is actually surjective onto Fs.
Indeed, Definition 5.1.2 implies that, for any σ in Fs, a clause of σ cannot be
a union of other clauses. Consequently, all the clauses of σ form the base of
some granular knowledge space K with, automatically, s(K) = σ.

The argument regarding the discriminative spaces and surmise functions
is straightforward.

Theorem 5.2.5 highlights an important consequence of the knowledges
spaces provides some additional motivation for the choice of the knowledge
space as one of our core concepts. In the case of a finite set Q, the axiom of
closure under union selects, among all knowledge structures, the families of
knowledge states that can be derived from clauses for the items.

According to Definitions 5.2.1 and 5.2.3, a granular space (Q,K) and a
surmise system (Q, σ) related as in Theorem 5.2.5 are said to be derived one
from the other. This terminology is consonant with Definition 3.8.4 in the
sense that the correspondence in Theorem 5.2.5 extends the correspondence
between quasi ordinal spaces and quasi orders obtained in Birkhoff’s Theo-
rem 3.8.3.

5.3 AND/OR Graphs

We show here how attributions can be regarded as a formalization of a type
of AND/OR graphs, and how these constructs generate knowledge spaces.
The AND/OR graphs are used in the field of artificial intelligence, although
often without a formal definition. They model the organization of a task into
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subtasks, for example in the resolution of a practical problem. Each of these
subtasks might itself require the preliminary completion of one of some sets
of other subtasks—or maybe no subtask at all. Here, the (sub)tasks are called
‘OR-vertices.’ A set of subtasks whose completion delivers the solution of
another (sub)task is encoded as an ‘AND-vertex.’ An edge from an AND-
vertex α to an OR-vertex a specifies that the combination α of subtasks
gives a way to solve task a. An edge from an ‘OR-vertex’ b to an ‘AND-
vertex’ α indicates that task b is involved in the combination α of tasks. To
eliminate possible ambiguities, we will formulate as axioms some assumptions
that are often left implicit elsewhere. The main difference between AND/OR
graphs and surmise systems lies in the introduction of artificial AND-vertices
representing combinations of subtasks; these ‘AND-vertices’ play the role of
the clauses in the setting of attributions (cf. Definition 5.1.2).

The next definition is illustrated by Example 5.3.2 and Figure 5.4.

5.3.1 Definition. An AND/OR graph is a directed graph G = (V,E), where
the nonempty set V of vertices is the disjoint union of two subsets VAND of
AND-vertices and VOR of OR-vertices. An element of the set E is a (directed)
edge, that is an ordered pair of vertices. We also require that:

(i) either the initial vertex of an edge belongs to VAND, and the terminal
vertex belongs to VOR, or vice versa;

(ii) each AND-vertex α belongs to exactly one edge (α, a), where a ∈ VOR;
(iii) each OR-vertex a belongs to at least one edge (α, a), where α ∈ VAND.

The interpretation of these three conditions relies on the meaning of the
vertices and edges discussed before Definition 5.3.1. Condition (i) essentially
says that the edges admit exactly one of the two intended meanings. Con-
dition (ii) requires that any combination of tasks relates to a definite task.
Condition (iii) imposes that any task is accessible through some combination
of (sub)tasks (including the empty combination).

5.3.2 Example. Suppose that VAND = {α1, α2, β1, β2, γ1, γ2, δ, ε, η, γ, ϑ} and
VOR = {a, b, . . . , h}. An AND/OR graph V = VOR ∪ VAND with 21 edges is
displayed in Figure 5.4. We use ∨ and ∧ to mark the OR-vertex and the
AND-vertex, respectively.

∨ a

∧ α1 ∧ α2

∨ b ∨ c ∨ d

∧β1 ∧β2 ∧
γ1

∧ γ2 ∧ δ

∨e ∨f ∨
g
∨ h

∧ε ∧η ∧
γ
∧ ϑ

Figure 5.4. The AND/OR graph
used in Example 5.3.2.
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As mentioned at the beginning of this section, the usual interpretation of
such a graph is in terms of tasks represented by OR-vertices. For instance,
task a requires the previous completion of (sub)tasks b and c, or of (sub)tasks
c and d. Each AND-vertex specifies a set of tasks whose overall completion
allows to start the unique task to which it is linked.

The ‘exactly one’ in Condition (ii) from Definition 5.3.1 is replaced by
some authors with ‘at least one.’ Our additional requirement is not a severe
restriction, in the sense that it can be fulfilled after addition of AND-vertices
without altering the intended meaning of the graph. Indeed, if some AND-
vertex α belonged to several edges (α, b1), (α, b2), . . . , (α, bn), we could always
replace α by clones, one for each bi, with i = 1, . . . , n. Such a cloning process
would become necessary in Example 5.3.1 if the AND-vertices β2 and γ1 were
collapsed.

Notice that our Definition 5.3.1 does not rule out ‘intractable’ situations
involving ‘cycles’ of subtasks. An analysis of these concepts will be given in
Section 5.6.

Each AND/OR graph generates a knowledge space on the set of its OR-
vertices. This should be clear to the reader who has perceived the link between
AND/OR graphs and attributions; Theorem 5.3.4 makes this link explicit. As
the arguments establishing the result below are straightforward, we skip the
proof.

5.3.3 Theorem. Let G = (V,E) be an AND/OR graph. A subset K of VOR
is said to be a state of G if it satisfies the condition: for any a in K, there
exists an edge (α, a) with α ∈ VAND such that b ∈ K for each edge (b, α).
Then the family of states is a knowledge space on VOR.

The next theorem shows how to transform an attribution into an AND/OR
graph by taking the items as OR-vertices and the clauses as AND-vertices.
Some care must be taken in a case where one set is a clause for several items. To
obtain Condition (ii) in Definition 5.3.1 of an AND/OR graph, we transform
a clause C for an item q into an AND-vertex (q, C).

5.3.4 Theorem. The following two constructions are mutual inverses and
establish a one-to-one correspondence between the collection of all attributions
and the collection of all AND/OR graphs.

Suppose that σ is an attribution on the set Q. Construct the corresponding
AND/OR graph by setting VOR = Q, VAND = {(q, C) q ∈ C ∈ σ(q)}, and
defining the edges as follows. Declare an edge ((q, C), a), whenever q = a ∈ Q
and C is a clause for item a in σ. Declare an edge (b, (q, C)) whenever C is a
clause for q in σ, and b ∈ C.

Conversely, if G = (V,E) is an AND/OR graph, let Q = VOR and define
an attribution σ on Q by the following statement. A subset C of Q is a clause
for item q if there exists an edge (α, q) with α some AND-vertex such that
C = {b ∈ VOR (b, α) is an edge}.
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The two constructions described in the theorem indicate that attributions
on Q and AND/OR graphs with VOR = Q are obvious rephrasings of one
another, the items corresponding to OR-vertices, and the clauses (or rather
the pairs (C, q), with C a clause for the item q) corresponding to the AND-
vertices. We leave the verifications to the reader.

5.4 Surmise Functions and Wellgradedness

As in Theorem 5.2.5, we consider a surmise system (Q, σ) and its derived
granular knowledge space (Q,K). Thus, for K ⊆ Q,

K ∈ K ⇐⇒ ∀q ∈ K,∃C ∈ σ(q) : C ⊆ K.
Remember from Theorem 4.1.9 that the space (Q,K) is well-graded if and
only if (Q,K) is finite and all its learning paths are gradations. Theorem 4.3.5
partially extends this result in the infinite case, that is, for ∞-wellgradedness
and ∞-gradations.

We now investigate how wellgradedness is reflected in the surmise system
(Q, σ).

5.4.1 Theorem. Suppose that K is a knowledge space having a base B. (By
Theorem 3.4.8, the base is thus formed by the collection of all the atoms.)
Let σ be the surmise function of K. Then, the following three conditions are
equivalent:

(i) K is ∞-well-graded5;
(ii) any atom of K is an atom at only one item; in other terms, the family
{σ(x) x ∈ ∪F} ⊆ 2B is a partition of B;

(iii) for any atom B at any item q, the set B \ {q} is a state; in other terms,
any clause for an item, minus that item, is a state.

We give two proofs of this result. The first one only applies to the finite
case and is intended for readers having skipped the starred Section 4.3 on
∞-wellgradedness in Chapter 4.

Proof for the finite case. (i) ⇒ (ii). For any atom B of K, there is a
tight path in K from ∅ to B, say ∅ = K0, K1, . . . , Kh = B. Then B \Kh−1

consists of a single item q, and Kh−1 = B \ {q} is a state. So, B can be an
atom only at item q. It follows immediately that {σ(x) x ∈ ∪F} ⊆ 2B is a
partition of B.

(ii) ⇒ (iii). Let B be an atom at item q. Condition (ii) implies that, for
any r ∈ B \ {q}, there is some clause C(r) for r such that r ∈ C(r) ⊂ B \ {q}.
Hence B \ {q} = ∪r∈B\{q}C(r), and B \ {q} is a state.

(iii) ⇒ (i). This is a consequence of Theorem 4.5.5.

5 In the case of a finite domain Q, “∞-well-graded” may be replaced with well-
graded.”

“
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The second proof applies to both the finite and infinite cases.

Proof*. (i) ⇒ (ii). We proceed by contradiction. Let (Q,K) be well-
graded, with two distinct questions q and q′ having a common clause C. Con-
sider any learning path L containing the knowledge state C (such a learning
path exists by the maximality principle). As C is a knowledge state minimal
for q ∈ C, we cannot have C = K ∪ {x} for any state K in L \ {C} and item
x 6= q. Similarly, as C is also minimal for q′ ∈ C, we cannot have C = K ∪{q}
for any K in L \ {C}. For the same reasons6, we have

C 6=
⋃
{L ∈ L L ⊂ C}.

Hence the learning path L cannot be a gradation, in contradiction with the
assumed ∞-wellgradedness.

(ii)⇒ (iii). Suppose that for some question q and some clause C for q, the
subset C \ {q} is not a state. Then there must be some q′ in C \ {q} such that
no clause for q′ is included in C \{q}. On the other hand, there is some clause
C ′ for q′ included in the state C. Thus, q ∈ C ′. As C is a state minimal for
q ∈ C, we derive C = C ′. We obtain in this way a common clause for q and
q′, the required contradiction.

(iii) ⇒ (i). Assume Condition (iii), and also that the space (Q,K) is not
well-graded. Hence, by Theorem 4.3.5, there exists some learning path L which
is not a gradation: in other terms, we can find some K in L satisfying both
K 6= ⋃{L ∈ L L ⊂ K}, and K \ {q} /∈ L for each item q ∈ K. Define
K◦ =

⋃{L ∈ L L ⊂ K}, noticing that K◦ ∈ L. There must exist some
question r in K \ K◦ with a clause C for r included in K. Condition (iii)
implies that C \ {r} ∈ K. Setting L = K◦ ∪ (C \ {r}, we also have L ∈ L.
Because K◦ ⊆ L ⊂ K, the definition of K◦ implies K◦ = L \ {r}. Hence
L = K \ {r}, contradicting our choice of K.

Theorem 5.4.1 does not extend to partial knowledge spaces (in the sense
of Definition 2.2.6). The term “spanned†” that we use below was introduced
in Definition 4.5.1.

5.4.2 Counterexample. Consider the family K spanned† by the base

B = {{a, b, c}, {b, d}, {c, d}}.
It is easily checked that K is discriminative and well-graded. However, neither
(ii) nor (iii) in Theorem 5.4.1 are satisfied: the surmise function

σ(a) = {{a, b, c}}, σ(b) = {{a, b, c}, {b, d}},
σ(c) = {{a, b, c}, {c, d}}, σ(d) = {{b, d}, {c, d}}

does not define a partition of the base B since {c, d} is an atom at both c and
d and, because {c, d}\{d} is not a union of states of the base, it is not a state
of K.

6 Cf. Section 4.3.1, Equation (4.12).
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5.5 Hasse Systems

Let R be a relation on a set Q. If we cast R as an attribution function in the
sense of Definition 5.1.4, then a subset K of Q is a state of R if it satisfies

∀(p, q) ∈ R : q ∈ K =⇒ p ∈ K

(cf. Definition 5.2.3.) In the case of a relation R that is a quasi order, the
states of R are exactly the states of the space derived from R in the sense of
Definition 3.8.4. The Hasse diagram P̆ of a partial order P on a finite set Q
(cf. 1.6.8) has the same states as P. Moreover, P̆ is the smallest relation having
exactly those states (where ‘smallest’ means ‘minimal for inclusion’). In that
sense, P̆ is a most economical summary of the partial order P. The concern of
this section is to develop a similar concept of ‘most economical summary’ for
surmise systems (and thus also for AND/OR graphs, cf. Theorem 5.3.4). We
shall define a ‘Hasse system’ as an ‘economical’ attribution, where the precise
meaning of ‘economical’ relies on the comparison method for attributions
which we introduce in the next definition.

5.5.1 Definition. We define the relation - on the collection F of all attribu-
tions on a nonempty set Q by the equivalence

σ′ - σ ⇐⇒ ∀q ∈ Q,∀C ∈ σ(q),∃C ′ ∈ σ′(q) : C ′ ⊆ C (σ, σ′ ∈ F). (5.5)

The relation - is always a quasi order, but not necessarily a partial or-
der (however, see Problem 6). It will be referred to as the attribution order
on F. Note that the restriction of - to the set of all relations on Q (cast as
attributions) is the usual inclusion comparison of relations.

In general, there may be several attributions producing the states of a
particular granular knowledge space (Q,K) (in the sense of Definition 5.2.3).
A natural condition on an attribution σ providing an economical description of
K is that σ be a minimal element in the subset of all attributions producing K

(where minimal refers to the attribution order -). In the case of an infinite
domain Q, the existence of at least one such minimal element is not ensured. In
this connection, remember that for infinite partial orders, Hasse diagrams can
be empty (take for example the usual linear order on the set of real numbers).

5.5.2 Example. The knowledge space H of Equation (5.1),

H =
{
∅, {a}, {b, d}, {a, b, c}, {b, c, e}, {a, b, d}, {a, b, c, d},
{a, b, c, e}, {b, c, d, e}, {a, b, c, d, e}

}
,

has a derived surmise function σ, which was described in Example 5.2.2 as

σ(a) =
{
{a}
}
, σ(b) =

{
{b, d}, {a, b, c}, {b, c, e}

}
,

σ(c) =
{
{a, b, c}, {b, c, e}

}
, σ(d) =

{
{b, d}

}
, σ(e) =

{
{b, c, e}

}
.
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This attribution σ is not minimal (for H), since the following attribution
ε satisfies ε - σ, but not σ - ε, while having the same knowledge states:

ε(a) = {∅}, ε(b) =
{
{c}, {d}

}
,

ε(c) =
{
{a, b}, {b, e}

}
, ε(d) =

{
{b}
}
, ε(e) =

{
{c}
}
.

We leave to the reader to verify that ε is not a minimal attribution for H.
Any deletion of items from a clause would change the collection of states, but
adding the clause {d, e} to ε(c) gives a strictly ‘smaller’ attribution, in the
sense of -, which still produces H. Notice that each state of H containing
{c} ∪ {d, e} also contains another clause for c. Hence the addition of the
clause {d, e} for c would be superfluous in an ‘economical’ attribution that
produces H.

5.5.3 Example. The following knowledge space is ordinal

G =
{
∅, {a}, {a, b}, {a, c}, {a, b, c}, {a, b, c, d}

}
,

since it is derived from a partial order cast as the surmise function δ with

δ(a) =
{
{a}
}
, δ(b) =

{
{b, a}

}
,

δ(c) =
{
{c, a}

}
, δ(d) =

{
{d, a, b, c}

}
.

The space G is also derived from the attribution γ, with

γ(a) = {∅}, γ(b) =
{
{a}, {c}

}
,

γ(c) =
{
{a}
}
, γ(d) =

{
{b, c}

}
.

There is thus some minimal attribution µ for G with µ - γ and {c} ∈ µ(b).
(The construction of µ is not necessary for our argument). This is cumbersome
in view of the extraneous clause {c} in µ(b), which is not contained in the
(unique) atom {a, b} at b. Moreover, each state containing {b} ∪ {c} also
contains the clause {a} for b. The condition defined below rules out such
extraneous clauses.

5.5.4 Definition. An attribution σ on the nonempty set Q is tense when for
any item q and any clause C for q, there is some state K (in the knowledge
space derived from σ in the sense of Definition 5.2.3) which contains q and
includes C but no other clause for q.

Notice that any relation cast as an attribution is tense. Also, any surmise
function is tense.

5.5.5 Theorem. Any attribution σ on Q which is tense satisfies Condi-
tion (iv) in the definition of a surmise system (see 5.1.2), namely

∀q ∈ Q, ∀C,C ′ ∈ σ(q) : C ⊆ C ′ =⇒ C = C ′.
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Proof. Assume C,C ′ ∈ σ(q) with C ′ ⊂ C. Then any state containing q and
C would also contains C ′, in contradiction with the tensity of σ.

5.5.6 Theorem. If an attribution is tense and produces a granular knowledge
space K, then any clause for any item q is contained in some atom of K at q.

Proof. Let σ be the attribution and suppose that C ∈ σ(q). Select a state K
containing {q} ∪ C but no clause for q distinct from C. By granularity, there
exists some atom A at q with A ⊆ K. Since A ∈ K, there is some clause D for
q such that D ⊆ A ⊆ K. We must have C = D in view of the choice of K.

5.5.7 Remarks. a) Granularity is automatically fulfilled when Q or K is fi-
nite. Our guess is that the conclusion of Theorem 5.5.6 does not hold when
granularity is not assumed. We leave this as one of the problems listed in
Chapter 18 (see Open Problem 18.3.1). We shall return in Chapter 8 to attri-
butions that produce granular knowledge spaces7.

b) Notice also that the atom mentioned in Theorem 5.5.6 is not necessarily
unique, as shown by the attribution ε in Example 5.5.2 with q = b.

Our preparation is now complete. Theorem 5.5.10 will show that the con-
cept of a ‘Hasse system’ given in the next definition is a genuine generalization
of the Hasse diagrams for partial orders.

5.5.8 Definition. A Hasse system for a granular knowledge space (Q,K), or
for its derived surmise system, is any attribution σ on Q which is minimal for
the quasi order - defined by (5.5) in the set of all attributions that

(i) are tense;
(ii) produce K.

In this situation, we also say that (Q, σ) is a Hasse system of (Q,K).
In Problem 8, we ask the reader to verify whether the attribution ε in

Example 5.5.2. is a Hasse system. Here is another example.

5.5.9 Example. Consider the attribution γ that produces the ordinal knowl-
edge space G in Example 5.5.3. There is no Hasse system α for G with α - γ.
(There cannot be one, because γ is not a tense attribution in view of its clause
{c} for b.) On the other hand, the Hasse diagram of the partial order δ cast
as an attribution β leads to the Hasse system

β(a) = {∅}, β(b) =
{
{a}
}
, β(c) =

{
{a}
}
, β(d) =

{
{b, c}

}
.

Clearly, any finite knowledge space admits at least one Hasse system. In-
deed, the number of tense attributions producing (Q,K) is positive and finite.
Thus one of them must be a minimal element with respect to the attribution
order -. Any such minimal element (Q, σ) is by definition a Hasse system.

7 See Definition 8.5.2.
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5.5.10 Theorem. Any finite, ordinal knowledge space (Q,K) admits exactly
one Hasse system. For each item q in Q, this system has a unique clause which
contains all the items covered by q in the partial order on Q derived from K.

Thus the Hasse diagram of the partial order on Q derived from K is cast
as the unique Hasse system mentioned in the Theorem.

Proof. By the arguments given before the statement of the theorem, we
know there exists at least one Hasse system for (Q,K). Let us denote by σ
such a Hasse system. We have to show that σ has exactly one clause for each
item q, and that this clause consists of all items covered by q in the partial
order P on Q derived from K. Take any clause C in σ(q) (by Condition (i) in
Definition 5.1.2 of an attribution, we have σ(q) 6= ∅). From Theorem 5.5.6, we
know that xPq holds for all items x in C. The minimality of σ, together with
Theorem 5.5.5, implies that q 6∈ C. Let K be the smallest state containing C.
It is easily checked that K ∪ {q} is also a state. Hence each item y covered
by q belongs to K. Moreover, such an item y must be in C (otherwise, there
would be an element z of C satisfying yPzPq, and q would not cover y). We
have thus proved that each clause for q contains all the elements covered by q.
From minimality again, no other item can belong to this clause.

5.5.11 Remarks. Had we not required tensity in the definition of a Hasse
diagram, the last theorem would not hold (see Example 5.5.3). A quasi order
has more than one Hasse system if it has at least three elements and a notion
with more than one element. This is illustrated in the two examples below.

5.5.12 Example. Let {(b, a), (b, c), (c, b)} be a relation on Q = {a, b, c}. This
relation is cast as the attribution σ, with

σ(a) =
{
{b}
}
, σ(b) =

{
{c}
}
, σ(c) =

{
{b}
}
.

The derived knowledge space K = {∅, {b, c}, {a, b, c}} is quasi ordinal. In fact,
σ is a Hasse system of K. It is not difficult to construct another one.

5.5.13 Example. Let Q = {a, b, c} and let S be the relation consisting of
the pairs (a, b), (b, c), and (c, a). The resulting quasi ordinal space K has only
two states. It admits several Hasse systems, one of which is S cast as an
attribution.

We do not know how to characterize efficiently the granular knowledge
spaces that admit a unique Hasse system (see Open Problem 18.1.4).
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5.6 Resolubility and Acyclicity

In our discussion of AND/OR graphs, we mentioned that any such graph has
an interpretation as an organizing device for subtasks of a main task. We
also indicated that Definition 5.3.1 does not preclude intractable situations
involving cycles of subtasks. In this section, we consider constraints ruling out
such cases. This leads us to introduce the concepts of ‘resoluble’ attributions.
In the context of knowledge assessment and learning, the idea is that any item
can be mastered via one or more learning tracks (that is, the prerequisites are
not self-contradictory). This rules out intractable situations such as that of
Example 5.5.13, in which each of items b and c is a prerequisite for the other.

A priori, two meanings can be given to ‘resolubility’: it can be either local
(each individual question can be mastered), or global (a strategy for gradually
mastering the whole structure can be designed). We begin by showing the
equivalence of the two conceptions in the finite case.

Bear in mind that the notation T−1(x) in Condition (ii) below stands for
the set {y ∈ Q yTx}.

5.6.1 Theorem. Consider the two following conditions for an attribution σ
on a nonempty set Q:

(i) for each item q in Q, there exists some natural number k and some se-
quence of items q1, . . . , qk = q such that, for each i in {1, . . . , k},

∃C ∈ σ(qi) : C ⊆ {q1, . . . , qi};

(ii) there exists a linear order T on Q satisfying, for each item q in Q:
(a) ∃C ∈ σ(q) : C ⊆ T−1(q);
(b) T−1(q) is finite.

Then (ii) ⇒ (i), and if Q is finite, (i) ⇒ (ii).

In Condition (i), by allowing i = 1, we impose in particular that some
clause for q1 be included in {q1}.
Proof. (ii) ⇒ (i). Let T be the linear order of Condition (ii), and pick any
item q ∈ Q. The sequence q1, . . . , qk of Condition (i) is formed by the items
that precede or equal q in the order T.

(i) ⇒ (ii), with Q finite. Consider all the subsets Y of Q that can be
equipped with a linear order T in such a way that (a) and (b) in Condition
(ii) are satisfied for all q ∈ Y . There exists at least one such subset Y , namely
a set {q1} as in Condition (i). Now take some maximal subset among all these
subsets, and call it again Y with T the linear order as above. We prove Y = Q.
Suppose that there is some q ∈ Q \ Y , and take a sequence q1, . . . , qk as in
Condition (i). There is a smallest index j such that qj /∈ Y . We may add qj to
Y and extend the linear order T to Y ∪ {qj} by putting qj after the elements
of Y . The resulting linearly ordered set contradicts the maximality of Y .
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That (i) ⇒ (ii) is not true in general is shown by the following example.
Take an uncountable set Q with the trivial attribution σ defined by the equa-
tions σ(q) = {∅} for all q ∈ Q. Then Condition (i) is satisfied (even with
k = 1), but not Condition (ii). Notice that a linearly ordered set (Q,T), with
T satisfying (b) in Theorem 5.6.1(ii), is necessarily isomorphic to a subset of
the natural numbers with the usual order.

5.6.2 Definition. An attribution σ on the nonempty set Q is resoluble when
it satisfies Condition (ii) in Theorem 5.6.1. The order T is called a resolution
order.

5.6.3 Theorem. Let σ be an attribution on a nonempty set Q, and let K

be the knowledge space produced by σ. Then σ is resoluble if and only if K
contains some chain C of states such that

(i) ∅ ∈ C;
(ii) ∀K ∈ C \ {Q}, ∃q ∈ Q \K : K ∪ {q} ∈ C;
(iii) ∀K ∈ C : K is finite;
(iv)

⋃
C = Q.

Proof. Let T be a resolution order for σ. The empty set plus all sets T−1(q),
for q ∈ Q, constitute a chain C satisfying Conditions (i) to (iv). Conversely,
if we have a chain C satisfying (i) to (iv), then a resolution order T is defined
by the equivalence

q T r ⇐⇒ (∀K ∈ C : r ∈ K ⇒ q ∈ K) (q, r ∈ Q).

5.6.4 Corollary. If two attributions produce the same knowledge space, then
both are resoluble, or neither is.

5.6.5 Definition. A knowledge space is resoluble when it is produced by at
least one resoluble attribution.

The definitions of a resoluble attribution and of a resoluble knowledge space
are not very appealing, because they involve an existential quantifier on linear
orders. We now give other conditions for resolubility.

5.6.6 Theorem. An attribution on a finite, nonempty set is resoluble if the
derived knowledge space is well-graded.

We leave the proof to the reader as Problem 10, in which we also ask to
show that the converse is not true.

5.6.7 Definition. A relation R on a set Q is acyclic when there does not
exist any finite sequence x1, x2, . . . , xk of elements of Q such that x1Rx2,
x2Rx3, . . . , xk−1Rxk, xkRx1 and x1 6= xk. (Note that an acyclic relation may
be reflexive.)
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5.6.8 Theorem. Any finite partially ordered set (cast as an attribution) is
resoluble. More generally, a relation on a finite set is resoluble if and only if
it is acyclic.

Proof. This follows from the existence of a linear order extending a given
partial order (Szpilrajn’s Theorem; see e.g. Szpilrajn, 1930; Trotter, 1992),
and of a partial order extending a given acyclic relation.

5.6.9 Example. The space H of Example 5.1.1 does not include any grada-
tion, and by Theorem 5.6.3 is thus not resoluble. We recall the surmise or
precedence relation - of H, defined earlier by

r - q ⇐⇒ r ∈ ∩Hq (in Definition 3.7.1),

r - q ⇐⇒ r ∈ ∩σ(q) (in terms of the surmise function σ).

The precedence relation - is represented in Figure 5.1 by its Hasse diagram.
Notice that it is acyclic. The second characterization suggests another rela-
tion R, defined by

rRq ⇐⇒ r ∈ ∪σ(q). (5.6)

The relation R has many cycles. For instance, since {b, d} ∈ σ(b) ∩ σ(d), we
have bRdRb.

5.6.10 Notation. For an attribution σ on the set Q, we define the relation
Rσ on Q by the equivalence

qRσq
′ ⇐⇒ ∃C ∈ σ(q′) : q ∈ C (q, q′ ∈ Q).

We leave the proof of the next theorem as Problem 12.

5.6.11 Theorem. Let σ be an attribution on a finite, nonempty set Q. Con-
sider the following three conditions:

(i) the relation Rσ is acyclic;
(ii) the space K produced by σ is resoluble;
(ii) the precedence relation of K is acyclic.

Then (i) ⇒ (ii) ⇒ (iii).

We shall run into acyclicity again in Chapter 8; see in particular Theo-
rem 8.5.6, in which the following concept is used.

5.6.12 Definition. An attribution σ is acyclic when the relation Rσ is
acyclic.
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5.7 Original Sources and Related Works

The link between knowledge spaces and surmise systems was established in
our original paper (Doignon and Falmagne, 1985) in the finite case. We have
spelled out in Theorem 5.3.4 the close relationship existing between attribu-
tions and AND/OR graphs. For the latter concept, the reader may consult
textbooks on artificial intelligence, such as Barr and Feigenbaum (1981) or
Rich (1983), for example.

The correspondence between a knowledge space and its derived surmise
system (Theorem 5.2.5) is rephrased as follows for simple closure spaces

(cf. Definition 3.3.1). For a nonempty set Q, consider a mapping γ : Q→ 22Q

with γ(x) being a family of subsets of Q called ‘semi-spaces’ or ‘co-points at x.’
In the case of all convex subsets in real affine spaces, a semi-space would be a
convex subset that is maximal for the property of not containing x. In the case
of all vector subspaces, a semi-space at x would be any hyperplane avoiding x.
We formulate four axioms on semi-spaces, where x, x′ ∈ Q:

(i) γ(x) 6= ∅;
(ii) if S ∈ γ(x), then x 6∈ S;

(iii) if x′ 6∈ S ∈ γ(x), then S′ ⊇ S for some S′ ∈ γ(x′);
(iv) if S, S′ ∈ γ(x) and S′ ⊆ S, then S = S′.

The attentive reader has surely noticed that each one of these four axioms is
the dual of the corresponding condition of Definition 5.1.2 defining a surmise
function. Functions γ on Q satisfying these four axioms are in a one-to-one
correspondence with simple closure spaces on Q.

Theorem 5.2.5, which links knowledge spaces and surmise systems, can also
be inferred from Flament (1976). A related result, in a different context and
expressed in a very different language, can be found in Davey and Priestley
(1990). Their Theorem 3.38 relates what, in our terminology, would be on the
one hand finitary spaces (cf. Definition 3.6.1), and on the other hand a variant
of surmise systems.

The translation of wellgradedness into a property of surmise systems was
obtained in the finite case by Koppen (1989) (see also Koppen, 1998). (More
precisely, Koppen uses Condition (ii) in Theorem 5.4.1.) A closely related work
can be found in the context of ‘convex geometries’; see for example Edelman
and Jamison (1985) or Van de Vel (1993).

The definition of Hasse systems given in 5.5.8 relies on the tensity property,
rather than on the Axiom [M] used by Doignon and Falmagne (1985). The
new definition sharpens the focus on the minimality of an attribution. While
acyclicity was already considered in our first paper on this subject, the concept
of resolubility is new here.
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Problems

1. In Definition 5.1.2, the first condition on a surmise system (Q, σ) is that

σ(q) is never identical to the empty subfamily of 22Q . Show that removing
this condition would correspond to dropping the requirement that Q ∈ K

for a knowledge space (Q,K). In other words, state and prove a result
analogous to Theorem 5.2.5 for the modified concepts of ‘pseudo’ surmise
system and ‘pseudo’ knowledge space.

2. Prove that any attribution defines a knowledge space; cf. Definition 5.2.3
and the equivalence (5.2).

3. Let σ be an attribution on a set Q, and let R be a relation on Q defined
by rRq ⇔ r ∈ ∪σ(q). Suppose that |σ(q)| = 1 for all q in Q. Show that
the relation R is transitive if and only if σ satisfies Condition (ii) of a
surmise function (see Definition 5.1.2).

4. Describe the surmise system derived from the granular knowledge space
(Q,K) in each of the following cases:
a) Q = {1, . . . , 100}, and K = {K ∈ 2Q |K| = 0 or |K| ≥ 50};
b) Q = {a, b, . . . , z}, and K = {K ∈ 2Q K = ∅ or a ∈ K};
c) Q = R2, and K = {K ⊆ R2 R2 \K is an affine subspace} (an affine

subspace is either the empty set, a subset formed with a single point,
a (straight) line or the whole R2);

d) K = {∅, Q};
e) Q is finite and K is a chain of subsets of Q.

5. Suppose (Q,K) is the knowledge space derived from the surmise system
(Q, σ). Give a necessary and sufficient condition, expressed in terms of
clauses of σ, ensuring that (Q,K) is discriminative (cf. the proof of The-
orem 5.2.5).

6. Show that the relation - on the collection F of all attribution functions
on a set Q (cf. Definition 5.5.1) is a quasi order, but not necessarily a
partial order. Show however that this relation, restricted to the collection
Fs of all surmise functions on Q, is a partial order. Do you need all the
axioms of a surmise function to prove this?

7. Let Q = {a, b, c, d} and

K = {∅, {a}, {c}, {a, c}, {c, d}, {a, b, c}, {a, c, d}, Q}.
Is the knowledge structure (Q,K) produced by some attribution? In the
case of a positive response, find a surmise function producing K; is this
surmise function unique? Solve the same problem in the two cases:
a) (Q,K′), with K′ = K ∪ {{a, b}, {b, c}, {b, c, d}};
b) (Q,K′′), with K′′ = K ∪ {{b}, {b, c}, {b, c, d}}.

8. Verify that the attribution ε in Example 5.5.2 is a Hasse system.
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9. Describe the knowledge space produced by each of the attributions σ in
the following cases:
a) Q = {1, . . . , 100}, and σ(q) = {{q}};
b) Q = N, σ(0) = {∅}, and σ(q) = {{q − 1}} for q ≥ 1;
c) Q is infinite and σ(q) consists of all the infinite subsets of Q, plus ∅;
d) σ(q) = {Q}.

10. Prove Theorem 5.6.6 and show that the converse does not hold.

11. Find all implications among the following conditions on a finite knowledge
structure (Q,K):
a) (Q,K) has learnstep number equal to 1 (cf. Definition 4.4.2);
b) (Q,K) is well-graded (cf. Definition 4.1.3);
c) (Q,K) is produced by an acyclic attribution (cf. Definition 5.6.2).

Do the implications remain true for an infinite knowledge structure
(Q,K) ?

12. Prove Theorem 5.6.11. Are the converse implications also true? Does the
answer change if we assume that the attribution σ is a surmise function?





6

Skill Maps, Labels and Filters

So far, cognitive interpretations of our mathematical concepts have been lim-
ited to the use of mildly evocative words such as ‘knowledge state’, ‘learning
path’ or ‘gradation.’ This makes sense since, as suggested by our Examples in
1.4.1, 1.4.2 and 1.4.3, many of our results are potentially applicable to widely
different fields. It must be realized, however, that our basic concepts are con-
sistent with traditional explanatory features of psychometric theory, such as
‘skills’ or ‘latent trait’ (cf. Lord and Novick, 1974; Weiss, 1983; Wainer and
Messick, 1983; Wainer, Dorans, Eignor, Flaugher, Green, Mislevy, Steinberg,
and Thissen, 2000). Some possible relationships between knowledge states and
skills, and other features of the items, are explored in this chapter.

6.1 Skills

Following Marshall (1981) and others (Falmagne, Koppen, Villano, Doignon,
and Johannesen, 1990; Albert, Schrepp, and Held, 1992; Lukas and Albert,
1993), we assume the existence of some basic set S of ‘skills.’ These skills may
consist in methods, algorithms or tricks which could in principle be identified.
The idea is to associate with each question q in the domain, the skills in S
which are useful or instrumental to solve this problem, and to deduce from this
association what the knowledge states are. Our discussion will be illustrated
by an example of a question which could be included in a test of proficiency
in the UNIX operating system.

6.1.1 Example. Question a: How many lines of the file lilac contain the
word ‘purple’? (Only one command line is allowed.)

The subject tested must respond by entering a line of UNIX commands.
This question can be solved by a variety of methods, three of which are listed
below. For each method, we state the command line in typewriter style face,
following the prompt ‘>.’

J.-C. Falmagne, J.-P. Doignon, Learning Spaces, 
DOI 10.1007/978-3-642-01039-2_6, © Springer-Verlag Berlin Heidelberg 2011 
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(1) > grep purple lilac | wc

The system responds by listing three numbers; the first one is the response
to the question. (The command ‘grep’, followed by the two arguments
‘purple’ and ‘lilac’, extracts all the lines containing the word ‘purple’
from the file lilac; the ‘pipe’ command ‘|’ directs this output to the ‘wc’
(word count) command, which computes the number of lines, words and
characters in this output.)

(2) > cat lilac | grep purple | wc

A less efficient solution achieving the same result. (The ‘cat’ command
requires a listing of the file lilac, which is unnecessary.)

(3) > more lilac | grep purple | wc

This is similar to the preceding solution.

Examining these three methods suggests several possible types of associ-
ation between the skills and the questions, and corresponding ways of con-
structing the knowledge states consistent with those skills. A simple idea is to
regard each one of the three methods as a skill. The complete set S of skills
would contain those three skills and some others. The linkage between the
questions and skills is then formalized by a function τ : Q → 2S associating
to each question q a subset τ(q) of skills. In particular, we would have1:

τ(a) = {1, 2, 3}.

Consider a subject endowed with a particular subset T of skills, containing
some of the skills in τ(a) plus some other skills relevant to different questions;
for example,

T = {1, 2, s, s′}.
This subject is able to solve Question a because T ∩ τ(a) = {1, 2} 6= ∅. In
fact, the knowledge state K of this subject contains all those items that can
be solved by at least one skill possessed by the subject; that is,

K = {q ∈ Q τ(q) ∩ T 6= ∅}.

This linkage between skills and states is investigated in the next section, un-
der the name ‘disjunctive model.’ We shall see that the knowledge structure
induced by the disjunctive model is necessarily a knowledge space. This fact
is established by Theorem 6.2.3.

We also briefly consider, for completeness, a model that we call ‘conjunc-
tive’ and that is the dual of the disjunctive model. In the disjunctive model,
only one of the skills assigned to an item q suffices to master that item. In the
case of the conjunctive model, all the skills assigned to an item are required.
Thus, K is a state if there is a set T of skills such that, for any item q, we have
q ∈ K exactly when τ(q) ⊆ T (rather than τ(q)∩ T 6= ∅ as in the disjunctive

1 There are many ways of solving Question a in the UNIX system. We only list
three of them here to simplify our discussion.
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model). The conjunctive model formalizes a situation in which, for any ques-
tion q, there is a unique solution method represented by the set τ(q), which
gathers all the skills required. The resulting knowledge structure is closed un-
der intersection (cf. Theorem 6.4.3). We leave to the reader the analysis of
a model producing a knowledge structure closed under both intersection and
union (see Problem 1).

A different type of linkage between skills and states will also be discussed.
The disjunctive and conjunctive models were obtained from a rather rudimen-
tary analysis of Example 6.1.1, which regarded the three methods themselves
as skills, even though several commands are required in each case. A more re-
fined analysis would proceed by considering each command as a skill, including
the ‘pipe’ command ‘|.’

The complete set S of skills would be of the form2

S = {grep, wc, cat, |, more, s1, . . . , sk}

where, as before, s1, . . . , sk refer to skills relevant to the other questions in
the domain under consideration. To solve Question a, a suitable subset of S
may be used. For example, a subject equipped with the subset of skills

R = {grep, wc, |, more, s1, s2}

would be able to solve Question a using either Method 1 or Method 3. Indeed,
the two relevant sets of commands are included in the subject’s set of skills R;
we have

{grep, wc, |} ⊆ R,
{more, grep, wc, |} ⊆ R.

This example is suggestive of a more complicated association between ques-

tions and skills. We shall postulate the existence of a function µ : Q → 22S

associating to each question q the collection of all the subsets of skills corre-
sponding to the possible solutions. In the case of question a, we have

µ(a) = {{grep, |, wc}, {cat, grep, |, wc}, {more, grep, |, wc}}.

In general, a subject having some set R of skills is capable of solving some
question q if there exists at least one C in µ(q) such that C ⊆ R. Each
of the subsets C in µ(q) will be referred to as a ‘competency for’ q. This
particular linkage between skills and states will be discussed under the name
‘competency model.’ We shall see that this model is consistent with general
knowledge structures, that is not necessarily closed under union or intersection
(cf. Theorem 6.5.3).

2 It could be objected that this analysis omits the skill associated with the proper
sequencing of the commands. However, it is reasonable to subsume this skill in
the command |, whose sole purpose is to link two commands.
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Example 6.1.1 may lead one to believe that the skills associated with a
particular domain could always be identified easily. In fact, it is by no means
obvious how such an identification might proceed in general. For most of
this chapter, we shall leave the set of skills unspecified and regard S as an
abstract set. Our focus will be the formal analysis of some possible linkages
between questions, skills, and knowledge states, along the lines sketched above.
Cognitive or educational interpretations of these skills will be postponed until
the last section of this chapter, where we discuss a possible systematic labeling
of the items, which could lead to an identification of the skills, and more
generally to a description of the content of the knowledge states themselves.

6.2 Skill Maps: The Disjunctive Model

6.2.1 Definition. A skill map is a triple (Q,S, τ), where Q is a nonempty set
of items, S is a nonempty set of skills, and τ is a mapping from Q to 2S \{∅}.
When the sets Q and S are specified by the context, we shall sometimes refer
to the function τ itself as the skill map. For any q in Q, the subset τ(q) of S
will be referred to as the set of skills assigned to q (by the skill map τ).

Let (Q,S, τ) be a skill map and T a subset of S. We say that K ⊆ Q is
the knowledge state delineated by T (via the disjunctive model) if

K = {q ∈ Q τ(q) ∩ T 6= ∅}.

Notice that the empty subset of skills delineates the empty knowledge
state (because τ(q) 6= ∅ for each item q), and that S delineates Q. The
family of all knowledge states delineated by subsets of S is the knowledge
structure delineated by the skill map (Q,S, τ) (via the disjunctive model).
When the term ‘delineate’ is used in the framework of a skill map without
reference to any particular model, it must always understood with respect to
the disjunctive model. Occasionally, when all ambiguities are removed by the
context, the family of all states delineated by subsets of S will be referred to
as the delineated knowledge structure.

6.2.2 Example. With Q = {a, b, c, d, e} and S = {s, t, u, v}, we define the
function τ : Q→ 2S by

τ(a) = {t, u}, τ(b) = {s, u, v}, τ(c) = {t},
τ(d) = {t, u}, τ(e) = {u}.

Thus (Q,S, τ) is a skill map. The knowledge state delineated by T = {s, t}
is {a, b, c, d}. On the other hand, {a, b, c} is not a knowledge state, since it
cannot be delineated by any subset R of S. Indeed, such a subset R would
necessarily contain t (because of item c); thus, the knowledge state delineated
by R would also contain d. The delineated knowledge structure is

K =
{
∅, {b}, {a, c, d}, {a, b, c, d}, {a, b, d, e}, Q

}
.
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Notice that K is a knowledge space. This is not an accident, for we have the
following result:

6.2.3 Theorem. Any knowledge structure delineated (via the disjunctive
model) by a skill map is a knowledge space. Conversely, any knowledge space
is delineated by at least one skill map.

Proof. Assume that (Q,S, τ) is a skill map, and let (Ki)i∈I be some arbitrary
subcollection of delineated states. If, for any i ∈ I, the state Ki is delineated
by a subset Ti of S, it is easily checked that

⋃
i∈I Ki is delineated by

⋃
i∈I Ti;

that is,
⋃
i∈I Ki is also a state. Thus, the knowledge structure delineated by

a skill map is always a space.
Conversely, let (Q,K) be a knowledge space. We build a skill map by

taking S = K, and letting τ(q) = Kq for any q ∈ Q. (The knowledge states
containing q are thus exactly the skills assigned to q; notice that τ(q) 6= ∅
follows from q ∈ Q ∈ K). For T ⊆ S = K, we check that the state K delineated
by T belongs to K. Indeed, we have

K = {q ∈ Q τ(q) ∩ T 6= ∅}
= {q ∈ Q Kq ∩ T 6= ∅}
= {q ∈ Q ∃K ′ ∈ K : q ∈ K ′ and K ′ ∈ T}
= {q ∈ Q ∃K ′ ∈ T : q ∈ K ′}
= ∪T,

yielding K ∈ K since K is a space. Finally, we show that any state K from K

is delineated by some subset of S, namely by the subset {K}. Denoting by L
the state delineated by the subset {K}, we get

L = {q ∈ Q τ(q) ∩ {K} 6= ∅}
= {q ∈ Q Kq ∩ {K} 6= ∅}
= {q ∈ Q K ∈ Kq}
= K.

We conclude that the space K is delineated by (Q,K, τ).

6.3 Minimal Skill Maps

In the last proof, we constructed, for any knowledge space, a specific skill map
that delineates this space. It is tempting to regard such a representation as a
possible explanation of the organization of the collection of states, in terms of
the skills used to master the items. In science, an explanation of a phenomena
is typically not unique, and there is a tendency to favor ‘economical’ ones.
The material in this section is inspired by such considerations.
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We begin by studying a situation in which two distinct skill maps only
differ by a mere relabeling of the skills. In such a case, not surprisingly, we
shall talk about ‘isomorphic skill maps’, and we shall sometimes say of such
skill maps that they assign ‘essentially the same skills’ to any item q. We
introduce this concept of isomorphism in the next definition.

6.3.1 Definition. Two skill maps (Q,S, τ) and (Q,S′, τ ′) (thus with the same
set Q of items) are said to be isomorphic if there exists a one-to-one mapping
f from S onto S′ that satisfies, for any q ∈ Q:

τ ′(q) = f(τ(q)) = {f(s) s ∈ τ(q)}.

The function f is called an isomorphism between (Q,S, τ) and (Q,S′, τ ′).
Definition 6.3.1 defines ‘isomorphism for skill maps’ with the same set of

items. A more general situation is considered in Problem 2.

6.3.2 Example. Let Q = {a, b, c, d, e} and S′ = {1, 2, 3, 4}. Define the skill
map τ ′ : Q→ 2S

′
by

τ ′(a) = {1, 4}, τ ′(b) = {2, 3, 4}, τ ′(c) = {1}
τ ′(d) = {1, 4}, τ ′(e) = {4}.

The skill map (Q,S′, τ ′) is isomorphic to the one given in Example 6.2.2: an
isomorphism f : S′ → S obtains by setting

f(1) = t, f(2) = s, f(3) = v, f(4) = u.

The following result is clear:

6.3.3 Theorem. Two isomorphic skill maps (Q,S, τ) and (Q,S′, τ ′) delineate
exactly the same knowledge space on Q.

6.3.4 Remark. Two skill maps may delineate the same knowledge space
without being isomorphic. As an illustration, notice that deleting skill v from
the set S in Example 6.2.2 and redefining τ by setting τ(b) = {s, u} yields the
same delineated space K. Skill v is thus superfluous for the delineation of K. As
recalled in the introduction to this section, it is a standard practice in science
to search for parsimonious explanations of the phenomena under study. In our
context, this translates into favoring skill maps with small, possibly minimal,
sets of skills. Specifically, we shall call a skill map ‘minimal’ if the deletion
of any of its skills modifies the delineated knowledge space. If this knowledge
space is finite, a minimal skill map always exists, and has the smallest possible
number of skills. (This assertion follows from Theorem 6.3.3.) In the infinite
case, the situation is a bit more complicated because a minimal skill map does
not necessarily exist. However, a skill map delineating the space and having a
set of skills with minimum cardinality always exists (because the class of all
cardinals is well-ordered, cf. Dugundji, 1966). It must be noted that such a
skill map with minimum number of skills is not necessarily unique—even up
to isomorphism (see Problem 10).
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6.3.5 Example. Consider the family O of all open subsets of the set R of
real numbers, and let I be any family of open intervals of R spanning O. For
x ∈ R, set τ(x) = Ix = {I ∈ I x ∈ I}. Then the skill map (R, I, τ) delineates
the space (R,O). Indeed, a subset T of I delineates {x ∈ R Ix∩T 6= ∅} = ∪T ,
and moreover an open subset O is delineated by {I ∈ I I ⊆ O}. It is well-
known that there are countable families I satisfying the above conditions.
Notice that such countable families will generate skill maps with minimum
number of skills, that is, with a set of skills of minimum cardinality. Never-
theless, there is no minimal skill map. This can be proved directly, or inferred
from Theorem 6.3.8.

With respect to uniqueness, minimal skill maps delineating a given knowl-
edge space—if they exist—behave in a better way. In fact, any two of them are
isomorphic. This will be shown in Theorem 6.3.8. This Theorem also provides
a characterization of knowledge spaces having a base (in the sense of 3.4.1).
Those knowledge spaces are exactly those that can be delineated by some
minimal skill map.

6.3.6 Definition. The skill map (Q′, S′, τ ′) prolongs (resp. strictly prolongs)
the skill map (Q,S, τ) if the following conditions hold:

(i) Q′ = Q;
(ii) S′ ⊇ S (resp. S′ ⊃ S);

(iii) τ(q) = τ ′(q) ∩ S, for all q ∈ Q.

A skill map (Q,S′, τ ′) is minimal if there is no skill map delineating the same
space while being strictly prolonged by (Q,S′, τ ′).

6.3.7 Example. Deleting skill v in the skill map of Example 6.2.2, we now
set Q = {a, b, c, d, e}, S = {s, t, u}, and

τ(a) = {t, u}, τ(b) = {s, u}, τ(c) = {t},
τ(d) = {t, u}, τ(e) = {u}.

It can be checked that (Q,S, τ) is a minimal skill map.

6.3.8 Theorem. A knowledge space is delineated by some minimal skill map
if and only if it has a base. In such a case, the cardinality of the base is equal to
that of the set of skills. Moreover, any two minimal skill maps delineating the
same knowledge space are isomorphic. Also, any skill map (Q,S, τ) delineating
a space (Q,K) having a base prolongs a minimal skill map delineating the same
space.

Proof. Consider any (not necessarily minimal) skill map (Q,S, τ), and denote
by (Q,K) the delineated knowledge space. For any s ∈ S, we write K(s) for
the state from K delineated by {s}. We have thus

q ∈ K(s) ⇐⇒ s ∈ τ(q). (6.1)
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Take any state K ∈ K, and consider a subset T of skills that delineates it.
For any item q, we have

q ∈ K ⇐⇒ τ(q) ∩ T 6= ∅
⇐⇒ ∃s ∈ T : s ∈ τ(q)

⇐⇒ ∃s ∈ T : q ∈ K(s) (by (6.1))

⇐⇒ q ∈ ∪s∈TK(s)

yielding K = ∪s∈TK(s). Consequently, A = {K(s) s ∈ S} spans K. If we
now assume that the skill map (Q,S, τ) is minimal, then the spanning family
A must be a base. Indeed, if A is not a base, then some K(s) ∈ A can be
expressed as a union of other members of A. Deleting s from S would result
in a skill map strictly prolonged by (Q,S, τ) and still delineating (Q,K),
contradicting the supposition that (Q,S, τ) is minimal. We conclude that any
knowledge space delineated by a minimal skill map has a base. Moreover the
cardinality of the base is equal to that of the set of skills. (When (Q,S, τ) is
minimal, we have |A| = |S|.)

Suppose now that the space (Q,K) has a base B. From Theorem 6.2.3, we
know that (Q,K) has at least one skill map, say (Q,S, τ). By Theorem 3.4.2,
the base B of (Q,K) must be included in any spanning subset of K. We have
thus, in particular, B ⊆ A = {K(s) s ∈ S}, where again K(s) is delineated
by {s}. Defining S′ = {s ∈ S ∃B ∈ B : K(s) = B} and τ ′(q) = τ(q) ∩ S′, it
is clear that (Q,S′, τ ′) is a minimal skill map.

Notice that a minimal skill map (Q,S, τ) for a knowledge space with base
B is isomorphic to the minimal skill map (Q,B, ψ) with ψ(q) = Bq. The
isomorphism is s 7→ K(s) ∈ B, with as above, K(s) delineated by {s}. Two
minimal skill maps are thus always isomorphic to each other.

Finally, let (Q,S, τ) be any skill map delineating a knowledge space K

having a base B. Defining K(s), S′ and τ ′ as before, we obtain a minimal skill
map prolonged by (Q,S, τ).

6.4 Skill Maps: The Conjunctive Model

In the conjunctive model, the knowledge structures that are delineated by
skill maps are the simple closure spaces in the sense of Definition 3.3.1 (see
Theorem 6.4.3 below). Since these structures are dual to the knowledge spaces
delineated via the disjunctive model, we will not go into much detail.

6.4.1 Definition. Let (Q,S, τ) be a skill map and let T be a subset of S. The
knowledge state K delineated by T via the conjunctive model is specified by

K = {q ∈ Q τ(q) ⊆ T}.

The resulting family of all knowledge states is the knowledge structure delin-
eated via the conjunctive model by the skill map (Q,S, τ).
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6.4.2 Example. As in 6.2.2, let Q = {a, b, c, d, e}, and S = {s, t, u, v}, with
τ : Q→ S defined by

τ(a) = {t, u}, τ(b) = {s, u, v}, τ(c) = {t},
τ(d) = {t, u}, τ(e) = {u}.

Then T = {t, u, v} delineates the knowledge state {a, c, d, e} via the conjunc-
tive model. On the other hand, {a, b, c} is not a knowledge state. Indeed if
{a, b, c} were a state delineated by some subset T of S, then T would include
τ(a) = {t, u} and τ(b) = {s, u, v}; thus, d and e would also belong to the
delineated knowledge state. The knowledge structure delineated by the given
skill map is

L =
{
∅, {c}, {e}, {b, e}, {a, c, d, e}, Q

}
.

Notice that L is a simple closure space (cf. 3.3.1). The dual knowledge struc-
ture L coincides with the knowledge space K delineated by the same skill map
via the disjunctive model; this space K was obtained in Example 6.2.2.

6.4.3 Theorem. The knowledge structures delineated via the disjunctive and
conjunctive model by the same skill map are dual one to the other. As a
consequence, the knowledge structures delineated via the conjunctive model
are exactly the simple closure spaces.

The verification of these simple facts is left to the reader.

6.4.4 Remark. In the finite case, Theorems 6.2.3 and 6.4.3 are mere rephras-
ing of a known result on ‘Galois lattices’ of relations; for ‘Galois lattice’,
see Chapter 8, especially Definition 8.3.10. We can reformulate a skill map
(Q,S, τ), with Q and S finite, as a relation R between the sets Q and S: for
q ∈ Q and s ∈ S, we define

q R s ⇐⇒ s /∈ τ(q).

Then the knowledge state delineated by a subset T of S via the conjunctive
model is the set

K = {q ∈ Q ∀s ∈ S \ T : qRs}.
These sets K can be regarded as the elements of the ‘Galois lattice’ of the
relation R. It is also well-known that any finite family of finite sets that is
closed under intersection can be obtained as the elements of the ‘Galois lattice’
of some relation. Theorems 6.2.3 and 6.4.3 restate this result and extend it
to infinite sets3. There is of course a direct analogue of Theorem 6.3.8 for
families of sets closed under intersection.

3 This extension is straightforward.
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6.5 Skill Multimaps: The Competency Model

The two preceeding sections dealt with the delineation of knowledge structures
closed under union or under intersection. We still need to discuss the general
case. The delineation of arbitrary knowledge structures will be achieved by
generalizing the concept of skill map. The intuition behind this generalization
is natural enough. To each item q, we associate a collection µ(q) of subsets
of skills. Any subset C of skills in µ(q) can be viewed as a method—called
‘competency’ in the next definition—for solving question q. Thus, possessing
just one of these competencies is sufficient to solve question q.

6.5.1 Definition. By a skill multimap, we mean a triple (Q,S;µ), where Q
is a nonempty set of items, S is a nonempty set of skills, and µ is a mapping
that associates to any item q a nonempty family µ(q) of nonempty subsets

of S. Thus, the mapping µ is from the set Q to the set (22S\{∅}) \ {∅}. We
call competency for the item q any set belonging to µ(q).

A subset K of Q is said to be delineated by some subset T of skills if K
contains all the items having at least one competency included in T ; formally

q ∈ K ⇐⇒ ∃C ∈ µ(q) : C ⊆ T.

Taking T = ∅ and T = S, we see that ∅ is delineated by the empty set of
skills, and that Q is delineated by S. The set K of all delineated subsets of Q
thus forms a knowledge structure. We say then that the knowledge structure
(Q,K) is delineated by the skill multimap (Q,S;µ). This model is referred to
as the competency model.

6.5.2 Example. With Q = {a, b, c, d} and S = {s, t, u}, define the mapping
µ : Q→ 2S by listing the competencies for each item in Q:

µ(a) =
{
{s, t}, {s, u}

}
, µ(b) =

{
{u}, {s, u}

}
,

µ(c) =
{
{s}, {t}, {s, u}

}
, µ(d) =

{
{t}
}
.

Applying Definition 6.5.1, we see that this skill multimap delineates the knowl-
edge structure:

K =
{
∅, {b}, {c}, {c, d}, {a, b, c}, {a, c, d}, {b, c, d}, Q

}
.

Notice that K is neither closed under union nor under intersection.

6.5.3 Theorem. Each knowledge structure is delineated by at least one skill
multimap.

Proof. Let (Q,K) be a knowledge structure. A skill multimap is defined by
setting S = K, and for q ∈ Q,

µ(q) =
{
K \ {M} M ∈ Kq

}
.



6.6 Labels and Filters 113

Thus, for each knowledge state M containing question q, we create the com-
petency K \ {M} for q. Notice that K \ {M} is nonempty, because it has
the empty subset of Q as a member. To show that (Q,S;µ) delineates K, we
apply Definition 6.5.1. For any K ∈ K, we consider the subset K \ {K} of K
and compute the state L that it delineates:

L =
{
q ∈ Q ∃M ∈ Kq : K \ {M} ⊆ K \ {K}

}
= {q ∈ Q ∃M ∈ Kq : M = K}
= {q ∈ Q K ∈ Kq}
= K.

Thus, each state in K is delineated by some subset of S.
Conversely, if T ⊆ S = K, the state L delineated by T is defined by

L =
{
q ∈ Q ∃M ∈ Kq : K \ {M} ⊆ T

}
=


Q, when T = K,

K, when T = K \ {K} for some K ∈ K,

∅, when |K \ T| ≥ 2,

and we see that L belongs to K. Thus K is indeed delineated by the skill
multimap (Q,S;µ).

We shall not pursue any further the study of the skill multimaps (Q,S;µ).
As in the case of the simple skill map, we could investigate the existence
and uniqueness of a minimum skill multimap for a given knowledge structure.
Other variants of delineation are conceivable. For example, we could define a
knowledge state as a subset K of Q consisting of all items q whose competen-
cies all meet a particular subset of S (depending on K). These developments
will be left to the interested reader.

6.6 Labels and Filters

On any question in a genuine domain of knowledge, such as arithmetic or
grammar, there typically is a wealth of information which could have a bear-
ing on the relevant skills and on the associated knowledge structure. This
background information could also be used to paraphrase the knowledge state
of a student in a description intended for a parent or for a teacher. Indeed, the
complete list of items contained in the student knowledge state may have hun-
dreds of items and may be hard to assimilate, even for an expert. A meaningful
summary could be provided, which could rely on the information available on
the items forming the knowledge state of the student. This summary might
cover much more than the skills possessed (or lacked) by a student, and may
include such features as a prediction of success in a future test, a recommen-
dation of a course of study, or an assignment of some remedial work.
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This section outlines a program of description (labeling) of the items
and integration (filtering) of the corresponding background information con-
tained in the knowledge states. We begin with some examples taken from the
ALEKS system outlined in Section 1.3.

6.6.1 Examples of labels. Suppose that a large pool of questions has been
selected, covering all the main concepts of the high school mathematics cur-
riculum in some country. Detailed information concerning each of these items
can be gathered under ‘labels’ such as

1. Descriptive name of the item.
2. Grade where the item is to be mastered.
3. Topic (section of a standard book) to which the item belongs.
4. Chapter (of a standard book) where the item is presented.
5. Division of the curriculum to which the item belongs.
6. Concepts and skills involved in the mastery of the item.
7. Type of the item (word problem, computation, reasoning, etc.).
8. Type of response required (word, sentence, formula).

Needless to say, the above list is only meant as an illustration. The actual
list could be much longer, and would evolve from an extensive collaboration
with experts in the field (in this case, experienced teachers). Two examples
of items with their associated labels are given in Table 6.1.

Each of the items in the pool would be labeled in the same manner. The
task is to develop a collection of computer routines permitting the analysis
of knowledge states in terms of the labels. In other words, suppose that a
particular knowledge state K has been diagnosed by some assessment routine
like those described in Chapters 13 and 14. The labels associated with the
items specifying that knowledge state will be passed through a collection of
‘filters’, resulting in a number of statements expressed in everyday language
in terms of educational concepts4.

6.6.2 The grade level reflected by the assessment. Suppose that, at
the beginning of a school year, a teacher wishes to know which grade (in
mathematics, say) is best suited for a student newly arrived from a foreign
country. A knowledge assessment routine has been used, which has determined
that the state of a student is K. A suitable collection of filters could be de-
signed along the following lines. As before, we write Q for the domain. For
each grade n, 1 ≤ n ≤ 12, a filter computes the subset Gn of Q containing all
the items to be mastered at that grade or earlier (label (2) in the list above).

If the educational system is sensible, we should have

G1 ⊂ G2 ⊂ · · · ⊂ G12.

4 Note that one could also restrict this filtering to the items in the fringes of the
uncovered state (cf. 4.1.6).
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Table 6.1. Two examples of items and their associated lists of labels.

Specification List Item

(1) Measure of missing angle in a triangle In a triangle ABC, the measure of

(2) 7 angle A is X◦ and the measure of

(3) Sum of angles in a plane triangle angle B is Y ◦. What is the number

(4) Geometry of the triangle of degrees in the measure of angle C?

(5) Elementary euclidean geometry

(6) Measure of an angle,

sum of the angles in a triangle,

addition, subtraction, deduction

(7) Computation

(8) Numerical

(1) Addition and subtraction of 2-place Mary bought two books costing $X

decimal numbers with carry and $Y . She gave the clerk $Z.

(2) 5 What amount of change should she

(3) Addition and subtraction of decimal receive?

numbers

(4) Decimal numbers

(5) Arithmetic

(6) Addition, subtraction, decimals,

carry, currency

(7) Word problem and computation

(8) Numerical

We may find
Gn−1 ⊂ K ⊂ Gn (6.2)

for some n, in which case the student could be assigned to grade n−1. However,
this would not be the best solution when Gn \K is very small. We need more
information. Moreover, we must provide for situations in which (6.2) does not
hold for any n. Next, the filter calculates the standard distance |K 4Gn| for
all grades n, and retains the set

S(K) = {nj |K 4Gnj | ≤ |K 4Gn|, 1 ≤ n ≤ 12}. (6.3)

Thus, S(K) contains all the grades which minimize the distance to K. Suppose
that S(K) contains a single element nj , and that we also have Gnj ⊂ K. It
would seem reasonable then to recommend the placement of the student in
grade nj + 1.
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But S(K) may very well contain more than one element. We still need
more information. In particular, the content of K, with its strengths and
weaknesses relative to its closest sets Gnj must be summarized in some useful
way. Without going into the technical details of such summary, we outline an
example of a report that the system might produce at this juncture:

The closest match for Student X is grade 5. However, X would be an
unusual student in that grade. Her knowledge of elementary geometry
far exceeds that of a representative student in grade 5. For example, X
is aware of the Pythagorean Theorem and capable of using it in appli-
cations. On the other hand, X has surprising weaknesses in arithmetic.
For example, etc...

Descriptions of this type would require the development of a varied collection
of new filters, beyond those involved in the computation of S(K) in Equa-
tion (6.3). Moreover, the system must have the capability of transforming, via
a natural language generator, the output of such filters into grammatically
correct statements in everyday language. We shall not pursue this discussion
here. The point of this paragraph was to illustrate how the labeling of the
items, vastly extending the concept of skills, could lead to refined descriptions
of the knowledge states that could be useful for various purposes.

6.7 Original Sources and Related Works

Skill maps were not introduced initially in knowledge space theory. As indi-
cated in the introductory paragraph of this chapter, we originally eschewed
cognitive interpretations of our concepts since we believed that the overall
machinery of knowledge spaces had potential use in a variety of empirical
contexts quite different from mental testing. Nevertheless, traditional inter-
pretations of tests results could not be ignored in view of the widespread use of
such tests, especially in the US. In fact, inquiries were often raised about the
possibility of ‘explaining’ these states from a small number of ‘basic’ aptitudes
(see e.g. Albert, Schrepp, and Held, 1992; Lukas and Albert, 1993). A first
pass at establishing such a linkage was made in Falmagne, Koppen, Villano,
Doignon, and Johannesen (1990). Many of the details about skill maps were
provided by Doignon (1994b). Further results on skill maps can also be found
in Düntsch and Gediga (1995a). To this date, nothing is published concerning
of labels and filters in practical applications of knowledge space theory.
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Problems

1. For which type of relation Q on a set Q is it true that there exist some set
S and some mapping τ : Q→ 2S such that qQr ⇐⇒ τ(q) ⊆ τ(r)?

2. Definition 6.3.1 of the isomorphism between skill maps was formulated for
two maps defined on the same set of items. Drop this assumption and pro-
pose a more general type of isomorphic skill assignment. Show then that
the knowledge spaces delineated according to the disjunctive model by
two isomorphic skill assignments (in this new sense) are isomorphic. (The
isomorphism of structures was introduced in Problem 14 of Chapter 2.)

3. Following up on Example 6.3.5, prove that no minimal skill map exists,
without making reference to Theorem 6.3.8.

4. Verify that the skill map of Example 6.3.7 is minimal.

5. Give a proof of Theorem 6.4.3.

6. Under which condition on a skill multimap (Definition 6.5.1) is the delin-
eated structure a knowledge space? Construct an example.

7. Solve a similar problem for the case of a knowledge structure closed under
intersection.

8. Design an appropriate set of filters capable of listing all the items that a
student in state K would not know, but would be ready to master.

9. Find a necessary and sufficient condition on a disjunctive model ensuring
that the delineated knowledge space is discriminative.

10. Prove the assertion in the last sentence of Remark 6.3.4. (Hint: in Exam-
ple 6.3.5, use two countable families I having different properties).
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Entailments and the Maximal Mesh

In practice, how can we build a knowledge structure for a specific body of
information? The first step is to select the items forming a domain Q. For
real-life applications, we will typically assume this domain to be finite. The
second step is then to construct a list of all the subsets of Q that are feasible
knowledge states, in the sense that anyone of them could conceivably occur
in the population of reference. To secure such a list, we could in principle rely
on one or more experts in the particular body of information. However, if no
assumption is made on the structure to be uncovered, the only exact method
consists in the presentation of all subsets of Q to the expert, so that he can
point out the states. As the number of subsets of Q grows exponentially with
the size |Q| of Q, this method becomes impractical even for relatively small
sets Q. (For example: for just 20 items, there are 220− 2 = 1, 048, 574 subsets
that are potential states for the expert to consider).

Three complementary solutions were investigated for building knowledge
structures in practical situations. The first one relies on supposing that the
knowledge structure under consideration satisfies some conditions, the closure
under union and/or intersection being prime examples. Such assumptions may
result in a considerable reduction of the number of questions to be asked from
an expert. An empirical example is discussed in Chapter 15 where it is shown
that, at least for some empirical domains, a practical technique is feasible with
50 items1. The first part of the present chapter is devoted to some relevant
theoretical results.

The second solution is also described in this chapter. The idea is to build
a large knowledge structure by combining a number of small ones. Suppose
that we have obtained—using experts and the method of the first solution, for
example—all the structures on subdomains of at most seven items, say. These

1 An even more convincing case is provided by the ALEKS system (see Section 1.3
and Chapter 17) which uses a knowledge structure with about 350 items in the
beginning algebra curriculum. This structure has been built in part by a technique
elaborating on the methods of this chapter (see also Chapters 15 and 16).

J.-C. Falmagne, J.-P. Doignon, Learning Spaces, 
DOI 10.1007/978-3-642-01039-2_7, © Springer-Verlag Berlin Heidelberg 2011 
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structures on subdomains can be regarded as projections (in the sense of Defi-
nition 2.4.2) of some unknown structure on the full domain. They can then be
combined into a global one on the whole domain Q. Here, “combining” means
selecting in a sensible way, if possible, one structure on Q that is the parent
structure of all the substructures on the subsets of seven items. Theoretical
results will isolate the situations allowing for such a construction. Moreover,
we study how properties of structures are preserved by the construction.

The third solution is based on collecting the responses of a large number
of subjects to the items of the domain. By an appropriate statistical analysis
of such data, the knowledge states can in principle be uncovered. This has
been demonstrated by Villano (1991) for small domains, using real data. The
technique is also applicable to large domains provided that the statistical
analysis of the data has been preceded by a ‘pruning down’ of the collection
of potential states by the methods of the first and/or second solutions (see
Cosyn and Thiéry, 2000). This particular technique relies on a heavy use of
some stochastic procedures for knowledge assessment (such as those presented
in Chapters 13 and 14) and is described in Chapter 15.

7.1 Entailments

We begin by examining the case of a quasi ordinal knowledge space (Q,K).
From Birkhoff’s Theorem 3.8.3, we know that this space is completely spec-
ified by its derived quasi order Q, defined by

pQq ⇐⇒ (∀K ∈ K : q ∈ K ⇒ p ∈ K),

where p, q ∈ Q (cf. Definition 3.8.4). As a practical application, we may
uncover a quasi ordinal space on a given domain by asking an (ideal) expert
all queries of the form

[Q0] Suppose a student has failed to solve item p. Do you believe this
student will also fail item q? Answer this query under the assumption
that chance factors, such as lucky guesses and careless errors, play no
role in the student’s performance.

Assuming that the expert’s responses2 are consistent with the unknown, quasi
ordinal space (Q,K), we form a relation Q on Q by collecting all pairs (p, q)
for which the expert gave a positive response to query [Q0]. The family K is
then obtained by applying Theorem 3.8.3, since

K ∈ K ⇐⇒
(
∀(p, q) ∈ Q : p /∈ K ⇒ q /∈ K

)
.

2 We recall that the responses to such queries as [Q0] (or [Q1] on the next page)
can also be obtained by a different method, which relies on the statistical analysis
of assessment data (see Remark 3.2.3).
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If we drop the assumption that the unknown knowledge space (Q,K) is
quasi ordinal, the responses to all queries of the form [Q0] do not suffice to
construct the space. As explained in 1.1.9, we consider in that case the more
general type of query:

[Q1] Suppose that a student has failed to solve items p1, . . . , pn. Do you
believe this student would also fail to solve item q? You may assume
that chance factors, such as lucky guesses and careless errors, do not
interfere in the student’s performance.

Such a query is summarized by the nonempty set {p1, . . . , pn} of items, paired
with the single item q. Thus, all the positive responses to the queries form
a relation P from 2Q to Q. The expert is consistent with the (unknown)
knowledge space (Q,K) exactly when the following equivalence is satisfied for
A ∈ 2Q \ {∅} and q ∈ Q:

AP q ⇐⇒ (∀K ∈ K : A ∩K = ∅⇒ q /∈ K). (7.1)

7.1.1 Example. For the knowledge space (Q,K) defined by Q = {a, b, c}
and K = {∅, {a, b}, {a, c}, Q}, the queries (A, q) with q /∈ A which call for a
positive response are listed below:

({a}, b), ({a}, c), ({a, b}, c), ({a, c}, b), ({b, c}, a).

7.1.2 Example. With k,m ∈ N and k < m, consider the knowledge space
(Q,K), where Q has m elements, and K is the family of all subsets of Q having
either 0 or at least k elements. For the corresponding relation P, we have: for
all A ∈ 2Q \ {∅} and q ∈ Q,

APq ⇐⇒ (q ∈ A or |A| > m− k).

We return to the general situation. To design an efficient procedure for
questioning the expert, we need to examine the relations P obtained through
Equation (7.1) from all the knowledge spaces K on Q.

7.1.3 Theorem. Let (Q,K) be a knowledge structure, and suppose that P is
the relation from 2Q \ {∅} to Q defined by Equation (7.1). Then, necessarily:

(i) P extends the reverse membership relation, that is: if p ∈ A ⊆ Q, then
APp;

(ii) if A, B ∈ 2Q \ {∅} and p ∈ Q, then APb for all b ∈ B and BPp imply
APp.

Proof. Condition (i) is immediate. Suppose that A, B and p are as in Con-
dition (ii) with APb for all b ∈ B and BPp. We have to show that for all
K ∈ K, A ∩K = ∅ implies p /∈ K. Take any K ∈ K with A ∩K = ∅. Thus,
by Equation (7.1), we have b /∈ K, for all b ∈ B. This means that B ∩K = ∅.
Using (7.1) again and the fact that BPp, we get p /∈ K, which yields APp.
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The next Theorem shows that all relations from 2Q \ {∅} to Q satisfying
Conditions (i) and (ii) are necessarily obtained, as in Theorem 7.1.3, from
some knowledge space. Since these relations will play a fundamental role in
the sequel, we give them a name.

7.1.4 Definition. An entailment for the nonempty domain Q (which may be
infinite) is a relation P from 2Q \ {∅} to Q that satisfies Conditions (i) and
(ii) in Theorem 7.1.3.

7.1.5 Theorem. There is a one-to-one correspondence between the family of
all knowledge spaces K on the same domain Q, and the family of all entail-
ments P for Q. This correspondence is defined by the two equivalences

AP q ⇐⇒ (∀K ∈ K : A ∩K = ∅⇒ q /∈ K), (7.2)

K ∈ K ⇐⇒
(
∀(A, p) ∈ P : A ∩K = ∅⇒ p /∈ K

)
. (7.3)

Proof. To each knowledge space (Q,K), we associate the relation P = f(K)
via Equation (7.2). The fact that P is an entailment follows from Theo-
rem 7.1.3 and Definition 7.1.4. Conversely, let P be any entailment for Q.
We define then a family K = g(P) of subsets of Q by Equation (7.3) and show
that K is a space on Q. It is clear that ∅, Q ∈ K. Suppose that Ki ∈ K for
all i in some index set I. We have to show that ∪i∈IKi ∈ K. Assume APp
and A∩ (∪i∈IKi) = ∅. Then A∩Ki = ∅ for all i ∈ I, thus p /∈ Ki. It follows
that p /∈ ∪i∈IKi. Applying the equivalence (7.2), we obtain ∪i∈IKi ∈ K.

We now show that f and g are mutual inverses. We proceed in two steps.

(1) We prove that (g◦f)(K) = K. Let K be a space on Q and let P = f(K).
Defining L = g(P), we show L = K. By definition:

L ∈ L ⇐⇒
(
∀A ∈ 2Q \ {∅}, p ∈ Q : (APp and A ∩ L = ∅)⇒ p /∈ L

)
.

Writing APp in the r.h.s. explicitly in terms of K and omitting the quantifiers
for A and p, we obtain

L ∈ L

⇐⇒
(

((∀K ∈ K : A ∩K = ∅⇒ p /∈ K) and A ∩ L = ∅)⇒ p /∈ L
)

(7.4)

⇐= L ∈ K.

To prove the converse of the last implication, assume L ∈ L together with
L /∈ K. Denote by L◦ the largest state contained in L. (Because K is a space,
L◦ is well defined: it is equal to the union of all the states contained in L.)
Since L /∈ K, there must exist some item p with p ∈ L\L◦. Setting A = Q\L,
we have for any K ∈ K:

A ∩K = ∅ =⇒ K ⊆ L,
=⇒ K ⊆ L◦,
=⇒ p /∈ K.
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As we also have A ∩ L = ∅, the r.h.s. of (7.4) gives p /∈ L, a contradiction.
This completes the proof that K = L. We conclude that (g ◦ f)(K) = K for
each space K on Q.

(2) We prove that (f ◦ g)(P) = P. Take any entailment P for Q. With
K = g(P) and Q = f(K), we show that Q = P. For A ∈ 2Q \ {∅} and p ∈ Q,
it is easily checked that

AQp ⇐⇒ (∀K ∈ K : A ∩K = ∅⇒ p /∈ K)

⇐⇒
(
∀K ∈ 2Q :

(
(∀B ∈ 2Q \ {∅}, ∀q ∈ Q : (BPq and

B ∩K = ∅)⇒ q /∈ K) and A ∩K = ∅
)
⇒ p /∈ K

)
.

Denoting by X the r.h.s. of the last equivalence, we clearly have APp ⇒ X.
To prove that we also have X ⇒ APp, we proceed by contradiction. Suppose
that X holds and that APp is false. Set K = {q ∈ Q not APq}. For any
B ∈ 2Q \ {∅} and q ∈ Q, we see that BPq together with B ∩ K = ∅
implies q /∈ K. Indeed, B ∩ K = ∅ implies APb, ∀b ∈ B; as we also have
BPq, Condition (ii) of Definition 7.1.4 implies APq, thus q /∈ K. Moreover,
by Condition (i) of that definition, we have A ∩K = ∅. Since p ∈ K by the
definition of K, we have reached a contradiction with X. We have thus proved
Q = P, that is (f ◦ g)(P) = P.

7.1.6 Definition. When an entailment P for Q and a knowledge space K on
Q correspond to each other as in Equations (7.2) and (7.3) in Theorem 7.1.5,
we say that they are derived from one another.

The correspondence obtained in Theorem 7.1.5 can be reformulated in an
intuitive way. Starting from the space (Q,K), it can be checked that APq
holds exactly when q does not belong to the largest state LA disjoint from A.
That is, for A ∈ 2Q \ {∅} and q ∈ Q, Equation (7.2) is equivalent to

AP q ⇐⇒ q /∈ LA. (7.5)

(The proof of the equivalence is left as part of Problem 1.)

In terms of the closure space dual to K (cf. Definition 3.3.1), APp holds
exactly when p belongs to the closure of A. On the other hand, for K ∈ 2Q,
Equation (7.3) is equivalent to

K ∈ K ⇐⇒ K = {p ∈ Q not (Q \K)Pp}, (7.6)

(see Problem 2). This equivalence is rephrased as follows in terms of closed
sets (that is, in terms of the complements of states): a subset F of Q is closed
if and only if it contains all items p satisfying FPp.
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7.2 Entail Relations

Condition (ii) in Theorem 7.1.3 is the key requirement for entailments. It must
be recognized as a disguised form of a transitivity condition for a relation. To
see this, we associate to any relation P from 2Q \ {∅} to Q a relation Q on
2Q \ {∅} by defining

AQB ⇐⇒ (∀b ∈ B : APb). (7.7)

Condition (ii) in Theorem 7.1.3 for P can be restated in terms of Q, yielding

(AQB and BQ{p}) =⇒ AQ{p}, (7.8)

for A,B ∈ 2Q\{∅} and p ∈ Q. In the last formula, we can replace the singleton
set {p} with any subset C of Q. Thus, Equation (7.8) essentially states that
Q is transitive. The following Theorem characterizes such relations Q. (Note
that Equation (7.7) implies APb⇔ AQ{b}.)

7.2.1 Theorem. Equation (7.7) establishes a one-to-one correspondence be-
tween the family of all entailments P for Q and the family of all relations Q

on 2Q \ {∅} that satisfy the three conditions

(i) Q extends the reverse inclusion, that is: for A,B ∈ 2Q \ {∅}, we have
AQB when A ⊇ B;

(ii) Q is a transitive relation;
(iii) if A, Bi ∈ 2Q \ {∅} for i in some nonempty index set I, then APBi

for all i ∈ I implies AP
(
∪i∈IBi

)
.

The proof is left to the reader, to whom we also leave to establish the following
additional assertions (see Problems 3 and 4). For a relation Q on 2Q \ {∅}
which is a transitive extension of reverse inclusion, it can be checked that
Condition (iii) in the last Theorem is equivalent to any of the following two
conditions:

(iv) for each A ∈ 2Q \ {∅}, there is a maximum subset B of Q such that
AQB (here, maximum means maximum for the inclusion);

(v) for all A,B ∈ 2Q \ {∅}, we have AQB iff AQ{b} holds for each b ∈ B.

With a finite domain Q, Condition (iii) in Theorem 7.2.1 is also equivalent to

(vi) AQB implies AQ(A ∪B) for all A,B ∈ 2Q \ {∅}.

7.2.2 Definition. A relation Q on 2Q \{∅} satisfying Conditions (i), (ii) and
(iii) in Theorem 7.2.1 is called an entail relation for Q.
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7.3 Meshability of Knowledge Structures

We now turn to another approach for building knowledge structures. In many
situations, the straightforward procedure for securing an entailment from a
particular expert and building the associated space is not practical. No matter
how competent the expert may be, his reliability in the course of many hours
of questioning may not be perfect, and the resulting space may be partly
erroneous3. Moreover, the domain may simply be so large that the number
of questions required to obtain an entailment would be unacceptable. These
objections call for other strategies.

We consider here the possibility of combining a number of small structures
into a big one. These small structures may for example be obtained from
several different experts, each of them being questioned for a short time on
a small subset of the domain; or they may result from a statistical analysis
of the responses from a large number of subjects, as in the work of Villano
(1991). The origin of the small structures is not relevant here. We simply
suppose that a number of projections of some unknown knowledge structure
are available, and we consider ways of assembling these pieces into a coherent
whole. Before getting into the theoretical background of such a construction,
we need a further look at the notion of projection already encountered in
Chapter 2. No finiteness assumption will be made, except when otherwise
mentioned.

From Definition 2.4.2 and Theorem 2.4.8, we recall that the projection of
a knowledge structure (Q,K) on a nonempty subset A of Q is the knowledge
structure (A,H) characterized by:

H = {H ∈ 2A H = A ∩K for some K ∈ K}. (7.9)

We also say that the state H = A∩K of H is the trace of the knowledge state
K on the subset A. The knowledge structure H is called a projection of the
knowledge structure (Q,K). The terms ‘substructure’ may be used as syn-
onyms of ‘projection.’ Note that many of the properties of a knowledge struc-
ture are also automatically transferred to their projections, as for instance the
property for a structure of being a learning space (cf. Theorem 2.4.8) or being
discriminative, quasi ordinal, ordinal, well-graded, or 1-connected4. By con-
trast, none of these properties necessarily holds for the whole structure when
it is valid for some of its projections. Positive results for some of these prop-
erties obtain when they hold for all the projections, however (cf. Problem 9
in Chapter 3).

We now turn to the combination of two structures on possibly overlapping
sets into a structure on the union of these two sets.
3 Some of the issues related to a possible unreliability of experts have been analyzed

in detail by Cosyn and Thiéry (2000). Their results are reviewed in Chapter 15.
We also recall our Remark 3.2.3 concerning the possibility of replacing a human
expert by assessment statistics.

4 In this regard, see Problem 8 in Chapter 2 and Problem 8 in Chapter 3.
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7.3.1 Definition. The knowledge structure (X,K) is called a mesh of the
knowledge structures (Y,F) and (Z,G) if

(i) X = Y ∪ Z;
(ii) F and G are the projections of K on X and Y , respectively.

As shown by the following examples, two knowledge structures may have more
than one mesh, or no mesh at all. Two knowledge structures having a mesh
are meshable; if this mesh is unique, they are uniquely meshable.

We exercise the concept of mesh on a few examples.

7.3.2 Example. The two knowledge structures (which are ordinal spaces)

F =
{
∅, {a}, {a, b}

}
, G =

{
∅, {c}, {c, d}

}
admit the two meshes (which are also ordinal spaces)

K1 =
{
∅, {a}, {a, b}, {a, b, c}, {a, b, c, d}

}
,

K2 =
{
∅, {a}, {a, b}, {a, c}, {a, b, c}, {a, b, c, d}

}
.

7.3.3 Example. Suppose that ({a, b, c, d},K) is a mesh of the two ordinal
knowledge spaces

F =
{
∅, {a}, {a, b}, {a, b, c}

}
, G = {∅, {c}, {b, c}, {b, c, d}

}
.

Then K must contain a state K such that K ∩ {b, c, d} = {c} ∈ G. Hence
either K = {a, c} or K = {c}, and since K ⊆ {a, b, c}, either {a, c} or {c}
must be a state of F, which is not true. Thus, F and G are not meshable.

7.3.4 Example. The two knowledge structures

F =
{
∅, {a}, {a, b}

}
, G =

{
∅, {b}, {b, c}

}
are uniquely meshable. Indeed, they have the unique mesh

K =
{
∅, {a}, {a, b}, {a, b, c}

}
.

(If a state contains c, it has to contain both of a and b; if it contains b, it has
to contain a). Notice that, in this example, the mesh K does not include the
union of the two component knowledge structures F and G, since {b, c} /∈ K.

We shall first investigate conditions under which a mesh exists.

7.3.5 Definition. A knowledge structure (Y,F) is compatible with a knowl-
edge structure (Z,G) if, for any F ∈ F, the intersection F ∩ Z is the trace on
Y of some state of G. When two knowledge structures are compatible with
each other, we shall simply say that they are compatible.

In other words, two knowledge structures (Y,F) and (Z,G) are compatible
if and only if they induce the same projection on Y ∩ Z.
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7.3.6 Theorem. Two knowledge structures are meshable if and only if they
are compatible.

Proof. Let (Y ∪Z,K) be a mesh of the two knowledge structures (Y,F) and
(Z,G), and suppose that F ∈ F. By the definition of a mesh, there is K ∈ K

such that K ∩ Y = F . Thus, K ∩ Z ∈ G and (K ∩ Z) ∩ Y = F ∩ Z. Hence
(Y,F) is compatible with (Z,G). The other case follows by symmetry.

Conversely, suppose that (Y,F) and (Z,G) are compatible. Define

K = {K ∈ 2Y ∪Z K ∩ Y ∈ F, K ∩ Z ∈ G}. (7.10)

It is clear that (Y ∪ Z,K) is a knowledge structure. For any F ∈ F, we have
F ∩ Z = G ∩ Y for some G ∈ G. Defining K = F ∪G, we obtain K ∩ Y = F
and K ∩ Z = G, yielding K ∈ K. Thus F is included in the projection of
K on Y . By the definition of K, the reverse inclusion is trivial, so F is this
projection. Again, the other case results from symmetry. We conclude that K
is a mesh of F and G.

The construction of the mesh used in the above proof is of interest and
deserves a separate investigation.

7.4 The Maximal Mesh

7.4.1 Definition. Let (Y,F) and (Z,G) be two compatible knowledge struc-
tures. The knowledge structure (Y ∪ Z,F ? G) defined by the equation

F ? G = {K ∈ 2Y ∪Z K ∩ Y ∈ F, K ∩ Z ∈ G}

is the maximal mesh of F and G. Indeed, we have K ⊆ F?G for any mesh K of
F and G. The operator ? will be referred to as the maximal meshing operator.
An equivalent definition of the maximal mesh is as follows:

F ? G = {F ∪G F ∈ F, G ∈ G and F ∩ Z = G ∩ Y }.

Obviously, we always have F ?G = G ?F. Notice in passing that, if F ∈ F and
F ⊆ Y \ Z, then F ∈ F ? G. A corresponding property holds of course for the
knowledge structure G.

7.4.2 Example. The maximal mesh of the two ordinal knowledge spaces from
Example 7.3.2 is the ordinal space

F ? G =
{
∅, {a}, {c}, {a, b}, {a, c}, {c, d}, {a, b, c}, {a, c, d}, {a, b, c, d}

}
.

7.4.3 Theorem. If F and G are compatible knowledge structures, then F ? G
is a space (respectively discriminative space) if and only if both F and G are
spaces (respectively discriminative spaces).

The proof is left to the reader as Problem 7.
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If F and G are compatible knowledge structures and F ? G is well-graded,
then F and G are both well-graded. The maximal mesh of well-graded knowl-
edge structures, or even learning spaces, is not necessarily well-graded, how-
ever. The counterexample below establishes this fact.

7.4.4 Example. Consider the two learning spaces

F =
{
∅, {a}, {b}, {a, b}, {a, c}, {b, c}, {a, b, c}

}
and

G =
{
∅, {c}, {d}, {b, c}, {b, d}, {c, d}, {b, c, d}

}
,

which are compatible. Their maximal mesh (necessarily a space)

F ? G =
{
∅, {a}, {d}, {a, c},{a, d}, {b, c}, {b, d}, {a, b, c},

{b, c, d}, {a, b, d}, {a, c, d}, {a, b, c, d}
}

is not well-graded since it contains {b, c}, but neither {b} nor {c}.

7.4.5 Definition. A mesh K of two knowledge structures F and G is called
(union) inclusive if F ∪G ∈ K for any F ∈ F and G ∈ G.

7.4.6 Theorem. Consider the following three conditions on two knowledge
structures (Y,F) and (Z,G):

(i) F and G admit some inclusive mesh;
(ii) F ? G is inclusive;

(iii) (∀F ∈ F : F ∩ Z ∈ G) and (∀G ∈ G : G ∩ Y ∈ F).

Then (i) ⇔ (ii) ⇒(iii). Moreover, if F and G are spaces, then (ii) ⇔ (iii).

We leave the proof to the reader (as Problem 8). The following examples
shows that in general, Condition (iii) does not imply Condition (ii).

7.4.7 Examples. a) Consider R3 and the two families F and G, where F

contains all the convex subsets of the plane y = 0, and G contains all the
convex subsets of the plane z = 0. Let thus Y and Z denote the planes y = 0
and z = 0, respectively. Obviously, we do not in general have F ∪G in F ? G
for any F in F and G in G.

b) An example with a finite domain is easily constructed. Still in R3, take
Y = {(0, 0, 1), (0, 0, 0), (1, 0, 0), (2, 0, 0)} and Z = {(0, 1, 0), (0, 0, 0), (1, 0, 0),
(2, 0, 0)}, with the states being the traces of the convex sets on Y and Z respec-
tively. The maximal mesh F ? G is not inclusive since {(0, 0, 1), (2, 0, 0)} ∈ F

and {(0, 0, 0)} ∈ G but the union of these two states is not in F ? G.

7.4.8 Theorem. If the maximal mesh F ? G of two knowledge structures F

and G is inclusive, then F∪G ⊆ F ?G. When F and G are spaces, F∪G ⊆ F ?G
implies that F ? G is inclusive.
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Again, we omit the proof (see Problem 9). The examples in 7.4.7 proves that
we cannot replace “spaces” by “structures” in Theorem 7.4.8.

7.4.9 Theorem. If the maximal mesh of two finite, compatible, well-graded
knowledge structures is inclusive, then it is necessarily well-graded.

Example 7.3.4 shows that the inclusiveness condition is not necessary for two
well-graded knowledge structures (or even spaces) to have a maximal mesh
that is also well-graded.

Proof. Let (Y,F) and (Z,G) be two well-graded knowledge structures, and
suppose that F ? G is inclusive. To prove that F ? G is well-graded, we use
Theorem 4.1.7(ii). Take any K,K ′ ∈ F ? G. As K ∩ Y and K ′ ∩ Y are two
states of the well-graded knowledge structure F, there exist a positive integer
h and some sequence of states in F

K ∩ Y = Y0, Y1, . . . , Yh = K ′ ∩ Y

such that for i = 0, 1, . . . , h− 1:

|Yi 4 Yi+1| = 1 and Yi ∩K ′ ⊆ Yi+1 ⊆ Yi ∪K ′.

Similarly, there exist a positive integer p and some sequence of states in G

K ∩ Z = Z0, Z1, . . . , Zp = K ′ ∩ Z

such that for j = 0, 1, . . . , p− 1:

|Zj 4 Zj+1| = 1 and Zj ∩K ′ ⊆ Zj+1 ⊆ Zj ∪K ′.

We then form the sequence

X0 = Y0 ∪ (K∩Z), X1 = Y1 ∪ (K ∩ Z), . . . ,

Xh = Yh ∪ (K ∩ Z) = (K ′ ∩ Y ) ∪ Zo,
Xh+1 = (K ′ ∩ Y )∪Z1, Xh+2 = (K ′ ∩ Y ) ∪ Z2, . . . ,

Xh+p = (K ′ ∩ Y ) ∪ Zp.

Clearly, X0 = K and Xh+p = K ′. Since F ? G is inclusive, we also have
Xk ∈ F ? G, for k = 0, 1, . . . , h+ p. On the other hand, for i = 0, 1, . . . , h− 1:

Xi ∩K ′ = (Yi ∪ (K ∩ Z)) ∩K ′
⊆ (Yi ∩K ′) ∪ (K ∩ Z)

⊆ Yi+1 ∪ (K ∩ Z)

= Xi+1,

and

Xi+1 = Yi+1 ∪ (K ∩ Z)

⊆ Yi ∪K ′ ∪ (K ∩ Z)

= Xi ∪K ′.
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In a similar way, one proves for j = h, h+ 1, . . . , h+ p− 1:

Xj ∩K ′ ⊆ Xj+1 ⊆ Xj ∪K ′.

Finally, it is easy to show that |Xi4Xi+1| equals 0 or 1. Thus, after deletion
of repeated subsets in the sequence Xi, we obtain a sequence as in Theo-
rem 4.1.7(ii).

We also indicate a simple result, which is very useful for the practical
applications.

7.4.10 Theorem. Suppose that (F,G), (F ? G,K), (G,K) and (F,G ?K) are
four pairs of compatible knowledge structures. Then, necessarily

(F ? G) ?K = F ? (G ?K).

Proof. Let X, Y and Z be the domains of K, F and G, respectively. The
result follows immediately from the following string of equivalences:

K ∈ (F ? G) ?K

⇐⇒ K ∩ (Y ∪ Z) ∈ F ? G and K ∩X ∈ K

⇐⇒ K ∩ (Y ∪ Z) ∩ Y ∈ F and K ∩ (Y ∪ Z) ∩ Z ∈ G and K ∩X ∈ K

⇐⇒ K ∩ Y ∈ F and K ∩ Z ∈ G and K ∩X ∈ K.

7.5 Original Sources and Related Works

Entail relations were independently investigated by Koppen and Doignon
(1990) and Müller (1989, under the name of “implication relations”). Both
sets of authors acknowledge an initial suggestion from Falmagne (see also
Falmagne, Koppen, Villano, Doignon, and Johannesen, 1990). Müller ob-
tains a version of Theorem 7.1.5 formulated in terms of implication relations,
while our presentation follows Koppen and Doignon (1990). We learned from
Bernard Monjardet that very similar results were obtained by Armstrong
(1974) (cf. also Wild, 1994). Related algorithmic implementations will be dis-
cussed in Chapters 15 and 16 in the form of the QUERY routine.

For additional results on entail relations, see Dowling (1994) or Düntsch
and Gediga (1995b). Another interesting question concerns the description
of a knowledge space by a ‘minimal’ part of its entailment. It is investigated
by Guigues and Duquenne (1986) in the framework of closure spaces and
‘maximal informative implications’ (see also Ganter, 1984).

The results on meshing are due to Falmagne and Doignon (1998). Ex-
tending the theory to the agregation of more than two structures, Heller and
Repitsch (2008) point to further intricacies and establish many results to re-
solve them.
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Problems

1. Prove the equivalence of the two Equations (7.2) and (7.5).

2. Prove the equivalence of the two Equations (7.3) and (7.6).

3. Prove Theorem 7.2.1.

4. For a relation Q on 2Q \ {∅} which is a transitive extension of reverse
inclusion, show that Condition (iii) in Theorem 7.2.1 is equivalent to any
of the following two conditions:

(iv) for each A ∈ 2Q \ {∅}, there is a maximum subset B of Q such
that AQB (here, maximum means maximum for the inclusion);

(v) for all A,B ∈ 2Q \ {∅}, we have AQB iff AQ{b} for all b ∈ B,
and in case the domain Q is finite, also to

(vi) AQB implies AQ(A ∪B) for all A,B ∈ 2Q \ {∅}.
In general, does Condition (vi) implies Condition (v)?

5. Let P be an entailment for the domain Q, and let K be the derived knowl-
edge space on Q. State and prove a necessary and sufficient condition on
P for the

(i) quasi ordinality of K;
(ii) wellgradedness of K;
(iii) granularity of K.

6. Any knowledge space K on the finite domain Q is derived from exactly one
surmise system σ on Q, and is also derived from exactly one entailment
for Q. Make explicit the resulting one-to-one correspondence between sur-
mise systems on Q and entailments for Q. Try to extend the result to the
infinite case by considering granular knowledge spaces.

7. Show that the maximal mesh of two compatible knowledge spaces is again
a space (cf. Theorem 7.4.3). If the two given spaces are (quasi) ordinal, is
the maximal mesh also (quasi) ordinal?

8. Prove Theorem 7.4.6.

9. Prove Theorem 7.4.8.

10. Let B be the base of the maximal mesh (X ∪ Y,F ? G) of two finite,
compatible knowledge spaces (X,F) and (Y,G) with bases C and D. Is
there a simple construction of B from C and D (taking into account the
intersection Y ∩ Z) ?

11. From Theorems 7.1.5 and 7.2.1, there exists a one-to-one correspondence
between the family of knowledge spaces K on Q and the family of entail
relations P for Q. State explicitly when K and P correspond to each other.
In particular, spell out the interpretation of APB, for A, B ⊆ Q, in terms
of closed sets (i.e. complements of states in K).
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Galois Connections*

In various preceding chapters, a number of one-to-one correspondences were
established between particular collections of mathematical structures. For in-
stance, Birkhoff’s Theorem 3.8.3 asserts the existence of a one-to-one corre-
spondence between the collection of all quasi ordinal spaces on a domain Q
and the collection of all quasi orders on Q. We will show here that all these
correspondences derive from natural constructions. Each derivation will be
obtained from the application of a general result about ‘Galois connections.’
A compendium of the notation for the various collections and the three
‘Galois connections’ of main interest to us is given at the end of the chap-
ter, in Table 8.3 on page 148. We star the whole chapter because its content
is more abstract than, and not essential to, the rest of this book.

8.1 Three Exemplary Correspondences

Table 8.1 summarizes three correspondences, gives references to relevant the-
orems, and recalls or introduces some notation.

Table 8.1. References, terminology, and notation for three one-to-one correspon-
dences encountered earlier. Columns headings in the table are as follows:

1: Theorem number
2 and 7: Name of mathematical structure
3 and 6: Typical symbol for this structure
4 and 5: Notation for the collection of structures

1 2 3 4 5 6 7

3.8.3 quasi ordinal space K Kso Ro Q quasi order

5.2.5 granular knowledge space K Ksg Fs σ surmise function

7.1.5 knowledge space K Ks E P entailment

J.-C. Falmagne, J.-P. Doignon, Learning Spaces, 
DOI 10.1007/978-3-642-01039-2_8, © Springer-Verlag Berlin Heidelberg 2011 
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We assume throughout the chapter that the domain Q is a fixed nonempty
set, which may be infinite. Line 1 of Table 8.1 refers to Birkhoff’s Theorem.
The existence of the one-to-one correspondences in this table proves that the
corresponding collections have the same cardinality. A close examination of
these correspondences reveals a more interesting situation. First, each one of
the correspondences can be canonically derived from a construction relating
two respectively larger collections of structures. Second, these larger collec-
tions and thus the original ones can be naturally (quasi) ordered, and the
correspondence, as well as the constructions, are ‘order reversing’ between
the (quasi) ordered sets.

8.1.1 Definition. Given two quasi ordered sets (Y,U) and (Z,V), a mapping
f : Y → Z is order reversing when for all x, y ∈ Y ,

xUy =⇒ f(x)V−1f(y).

The mapping f is an anti-isomorphism if it is bijective and satisfies the
stronger condition

xUy ⇐⇒ f(x)V−1f(y),

again for all x, y ∈ Y .

Taking the correspondence in the upper line of Table 8.1 as an example,
the two larger collections are: on the one hand, the family of all knowledge
structures on the fixed set Q, and on the other hand, the family of all relations
on Q. Definition 3.7.1 associates to any knowledge structure K a particular
relation, namely the surmise relation - (which happens to be a quasi order,
cf. Theorem 3.7.2): we have, for r, q ∈ Q,

r - q ⇐⇒ r ∈ ∩Kq.

Conversely, Theorem 3.8.5 shows how to construct, for any given relation
Q on Q, a derived knowledge structure K on Q (cf. Definition 3.8.6): a subset
K of Q is a state of this structure when

∀q ∈ K,∀r ∈ Q : rRq =⇒ r ∈ K.

It can be checked that both of the resulting mappings are inclusion revers-
ing; moreover, they form a so-called ‘Galois connection’ in the sense defined
below. As shown by Monjardet (1970), the one-to-one correspondence in the
upper line of Table 8.1 consists of appropriate restrictions of these mappings.

8.2 Closure Operators and Galois Connections

A closure space is defined in 3.3.1 as a collection of subsets of a domain Q
that is closed under intersection (and thus contains Q, as the intersection of
the empty subcollection). Typical examples were given in 3.3.2, such as the
Euclidean space R3 equipped with the family of all its affine subspaces, or with
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the family of all its convex subsets. Another example consists in the power
set 2E of a given set E, together will all knowledge spaces on E. It is indeed
easily verified that the intersection ∩i∈IKi of any family (Ki)i∈I of spaces on
E is again a knowledge space on E, and also that 2E is a knowledge space
(see Problem 1).

For any closure space (Q,L), we built in Theorem 3.3.4 a mapping
2Q → 2Q : A 7→ A′, with A′ the closure of A (cf. Definition 3.3.5). In the
three examples just mentioned, we obtain the affine closure, the convex clo-
sure and the ‘spatial closure1’, respectively. In the third example, more ex-
plicitly, any knowledge structure K on a domain E admits a spatial closure,
which is the smallest knowledge space on E containing K, or in the terms of
Definition 3.4.1, the space spanned by K (see Example 8.2.2(a) below).

These situations have in common that the domain of the ‘closure opera-
tor’ (such as the power set of R3, or the family of all knowledge structures
on E) can be ordered by inclusion, and the resulting partial order is tightly
intertwined with that operator. Given a closure space (Q,L), we denote by
h(A) = A′ the closure of the subset A of Q, and recall the fundamental prop-
erties of the ‘closure operator’ h (cf. Theorem 3.3.4): for all A,B in 2Q,

1. A ⊆ B implies h(A) ⊆ h(B);
2. A ⊆ h(A);
3. h2(A) = h(A);
4. A ∈ L iff A = h(A).

We now consider a fairly abstract setting, taking any quasi ordered set
(X,-) as the domain of the ‘closure operator.’

8.2.1 Definition. Let (X,-) be a quasi ordered set, and let h be a mapping
of X into itself. Then h is a closure operator on (X,-) if it satisfies the
following three conditions: for all x, y in X,

(i) x - y implies h(x) - h(y);
(ii) x - h(x);
(iii) h2(x) = h(x).

Moreover, any x in X is closed when h(x) = x.

8.2.2 Examples. a) Let K be the set of all knowledge structures on a set Q,
with K ordered by the inclusion relation. For any K ∈ K, let s(K) be the
smallest space including K, that is, the knowledge space spanned by K. Then,
s is a closure operator on (K,⊆), and the closed elements are the spaces
(Problem 1).

b) More generally, suppose that (Q,L) is a closure space in the sense of
Definition 3.3.1. For any A ∈ 2Q, let h(A) = A′ be the smallest element
of L including A. It is easily checked that the mapping h : 2Q → 2Q is a
closure operator on (2Q,⊆), the closed elements being precisely the elements

1 See Definition 8.5.4.



136 8 Galois Connections*

of L (cf. Problem 3). This example covers many fundamental structures in
mathematics. A few of them are indicated below by the name given to the
elements of L (together with the resulting closure operator):

— all the affine subsets of an affine space (affine closure);
— all the convex subsets of an affine space over an ordered skew field (convex

closure);
— all the sublattices of a given lattice (generated sublattice);
— all the subgroups of a group (generated subgroup);
— all the closed sets in a topological space (topological closure);
— all the ideals of a ring (generated ideal).

Two further examples are contained in Definitions 8.4.1 and 8.5.4.

Our next definition extends to quasi orders a standard concept of ordered
set theory (see e.g. Birkhoff, 1967). As an illustration, we recall the example
mentioned in the second line of Table 8.1: take as a first quasi ordered set the
family of all knowledge structures on a fixed domain Q, and as a second quasi
ordered set the family of all relations on Q, both families being ordered by
inclusion. Then, consider the mappings mentioned in the previous section.

8.2.3 Definition. Let (Y,U) and (Z,V) be two quasi ordered sets, and let
f : Y → Z and g : Z → Y be any two mappings. The pair (f, g) is a Galois
connection between (Y,U) and (Z,V) if the following six conditions hold: for
all y, y′ ∈ Y and all z, z′ ∈ Z,

(i) yUy′ and y′Uy imply f(y) = f(y′);
(ii) zVz′ and z′Vz imply g(z) = g(z′);
(iii) yUy′ implies f(y)V−1f(y′);
(iv) zVz′ implies g(z)U−1g(z′);
(v) yU(g ◦ f)(y);
(vi) zV(f ◦ g)(z).

The following facts will be useful, and are easily verified. We leave parts of
the proof to the reader (see Problem 4.)

8.2.4 Theorem. Let (Y,U), (Z,V), f and g be as in Definition 8.2.3. Then
the following five properties hold:

(i) g ◦f and f ◦g are closure operators, respectively on (Y,U) and (Z,V);
(ii) there is at most one closed element in every equivalence class of the

quasi ordered set (Y,U) (resp. (Z,V));
(iii) the set Y0 of all the closed elements of Y (resp. Z0, Z) is partially

ordered by U0 = U ∩ (Y0 × Y0) (resp. V0 = V ∩ (Z0 × Z0));
(iv) if z ∈ f(Y ), there exists z0 in Z0 such that zVz0 and z0Vz. Similarly,

if y ∈ g(Z), there exists y0 in Y0 with yUy0 and y0Uy;
(v) the restriction f0 of f to Y0 is an anti-isomorphism between (Y0,U0)

and (Z0,V0). Moreover f−1
0 = g0, where g0 is the restriction of g to Z0.
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Proof. We only prove parts (i), (ii) and (iii). In view of the symmetry of
the statements, we only need to establish the facts concerning the quasi order
(Y,U) and the mapping g ◦ f .

(i) We have to verify that, with U =- and g ◦f = h, Conditions (i) to (iii)
in Definition 8.2.1 are satisfied. Suppose that xUy. Applying 8.2.3 (iii) and (iv)
yields, successively, f(x)V−1f(y) and (g◦f)(x)U(g◦f)(y), establishing 8.2.1(i).
Up to a change of notation, Conditions 8.2.3(v) and 8.2.1(ii) are identical here.
Finally, we have to show that, for all x ∈ Y , we have h2(x) = h(x), or more
explicitly

g
(
(f ◦ g ◦ f)(x)

)
= g
(
f(x)

)
. (8.1)

In view of 8.2.3(ii), Equation (8.1) holds if we have

(f ◦ g ◦ f)(x)Vf(x) (8.2)

and

f(x)V(f ◦ g ◦ f)(x). (8.3)

Both of these formulas are true. By 8.2.3(v), we have xU(g ◦ f)(x). Applying
8.2.3(iii) gives Equation (8.2). From 8.2.3(vi), we derive Equation (8.3). We
conclude that g ◦ f is a closure operator on (Y,U).

(ii) and (iii). Suppose that x and y are in the same equivalence class of
(Y,U). Thus, xUy and yUx. By 8.2.3(i), this implies f(x) = f(y). If both x
and y are closed elements (for the closure operator g ◦ f), we obtain

x = (g ◦ f)(x) = (g ◦ f)(y) = y.

This argument also shows that U0 = U∩ (Y0×Y0) is antisymmetric, and thus
establishes (iii).

Parts (iv) and (v) are left to the reader (as Problem 4).

When the quasi order V on Z happens to be a partial order, the first part
of Condition (iv) in Theorem 8.2.4 can be reformulated as f(Y ) = Z0. The
following example shows that this simplification does not hold in general.

8.2.5 Example. We build two weakly ordered sets (Y,U) and (Z,V), each
having two classes, by setting

Y = {a, b}, xUy ⇔ (x = a or y = b),

Z = {u, v, w}, zVt ⇔ (z = u or t = v or t = w).

Define two mappings f : Y → Z and g : Z → Y by

f(a) = w, f(b) = v,

g(u) = g(v) = g(w) = b.

The pair (f, g) is a Galois connection between (Y,U) and (Z,V). The only
closed elements are b in Y , and v in Z. However f({a, b}) = {v, w} 6= {v}.
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8.3 Lattices and Galois Connections

When the quasi ordered sets between which a Galois connection is defined are
‘lattices’, the collections of closed elements are themselves ‘lattices.’ Before
stating the relevant definition and results, we briefly present an important
application of Theorem 8.2.4 in the field of ordinal data analysis. Let R be a
relation from a set X to a set Y . A Galois connection (f, g) between (2X ,⊆)
and (2Y ,⊆) will be built starting from R. For A ∈ 2X , we define

f(A) = {y ∈ Y ∀a ∈ A : aRy}, (8.4)

and similarly for B ∈ 2Y , we define

g(B) = {x ∈ X ∀b ∈ B : xRb}. (8.5)

The next theorem makes use of the following concept.

8.3.1 Definition. A maximal rectangle of a relation R from X to Y is a pair
of subsets A of X and B of Y that satisfies:

(i) for all a ∈ A, b ∈ B, we have aRb;
(ii) for each x in X \A there is some b in B for which not xRb;
(iii) for each y in Y \B, there is some a in A for which not aRy.

The term “maximal rectangle” is a natural one for a relation R between two
finite sets when R is encoded into a 0-1 array; see the example below.

8.3.2 Example. Let X = {a, b, c, d, e} and Y = {p, q, r, s}; a relation R from
X to Y is specified by its 0-1 array in Table 8.2.

Table 8.2. The 0-1 array for the relation R in Example 8.3.2.

p q r s

a 1 1 0 1

b 1 0 1 1

c 1 0 0 0

d 0 1 0 1

e 0 0 1 1

For this particular relation R, here are some maximal rectangles (A,B), with

A = {a, b, c}, B = {p},
or A = {b, e}, B = {r, s},
or A = {a, b, d, e}, B = {s},
or A = ∅, B = {p, q, r, s}.

All the maximal rectangles of R will be listed in Example 8.3.11.
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8.3.3 Theorem. Let R be a relation from X to Y . The pair (f, g) of mappings
defined in Equations (8.4) and (8.5) form a Galois connection between the
ordered sets (2X ,⊆) and (2Y ,⊆). The pairs (A,B) such that A is a closed set
in 2X and B is a closed set in 2Y with B = f(A), and thus also A = g(B),
are exactly the maximal rectangles of R.

Proof. The first two requirements in Definition 8.2.3 for a Galois connection
are automatically satisfied, since the domains of f and of g are ordered. If
A1, A2 ∈ 2X , then A1 ⊆ A2 implies f(A1) ⊇ f(A2) because of the quantifica-
tion in Equation (8.4); this establishes Condition (iii) in Definition 8.2.3, and
Condition (iv) is similarly derived from Equation (8.5). Condition (v) here
means: A ⊆ g(f(A)) for all A ∈ 2X . This is a consequence of the definition
of f and g, and so is Condition (vi). Finally, proving the assertion that pairs
of related closed sets coincide with the maximal rectangles is easy and left to
the reader.

8.3.4 Definition. The Galois connection built in Theorem 8.3.3 is called the
Galois connection of the relation R.

As for any Galois connection, the two ordered collections of closed sets
are anti-isomorphic (cf. Theorem 8.2.4(v)). In the situation of Theorem 8.3.3,
they are moreover ‘lattices’ (see below). After recalling some terminology, we
will derive this assertion from a general result on Galois connections between
lattices.

8.3.5 Definition. An ordered set (X,P) is a lattice if any two of its elements
x, y admit a ‘greatest lower bound’ and a ‘ least upper bound.’ The greatest
lower bound of x and y is the element x∧y in X satisfying (x∧y)Px, (x∧y)Py
and for all l ∈ X, (lPx and lPy) implies lP(x ∧ y). Similarly, the least upper
bound of x and y is the element x ∨ y in X such that xP(x ∨ y), yP(x ∨ y),
and for all u ∈ X, (xPu and yPu) implies (x ∨ y)Pu.

Many examples of lattices appear as particular cases of the fairly general
situation in the example below.

8.3.6 Example. Let (Q,L) be a closure space; then (L,⊆) is a lattice in
which, for x, y ∈ L, we have x∧ y = x∩ y and x∨ y = h(x∪ y) (with as usual
h(z) denoting the closure of z). This example is generalized to any closure
operator in the next theorem.

8.3.7 Theorem. Suppose that h is a closure operator on a lattice (X,-).
The collection X0 of all closed elements is itself a lattice for the induced order
-0 = - ∩ (X0×X0). For x, y ∈ X0, the least upper bound x∨0 y in (X0,-0)
is equal to h(x ∨ y), where x ∨ y denotes the least upper bound in (X,-); on
the other hand, the greatest lower bound of x and y in (X0,-0) and in (X,-)
coincide.
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Proof. We will use the axioms for a closure operator h without mentioning
them explicitly. Let x, y be two elements closed for h, that is h(x) = x,
and h(y) = y. As x - x ∨ y, we get x = h(x) - h(x ∨ y), and similarly
y = h(y) - h(x ∨ y). Now if z ∈ X0 satisfies x -0 z and y -0 z, we infer
x ∨ y - z, so also h(x ∨ y) -0 h(z) = z. In all, this shows that h(x ∨ y) is the
greatest lower bound in (X0,-0) of x and y.

Now, x ∧ y - x implies h(x ∧ y) -0 h(x) = x; as we have similarly
h(x∧y) -0 y, we infer h(x∧y) -0 x∧y. Since we always have x∧y - h(x∧y),
we conclude that x ∧ y = h(x ∧ y), and hence x ∧ y is a closed element, thus
also the greatest lower bound of x and y in (X0,-0).

8.3.8 Corollary. Let (f, g) be a Galois connection between the lattice (Y,U)
and the quasi ordered set (Z,V). Then the two collections Y0 and Z0 of closed
elements in respectively Y and Z are anti-isomorphic lattices for the induced
orders U0 = U ∩ (Y0 × Y0) and V0 = V ∩ (Z0 × Z0). For x, y ∈ Y0, the least
upper bound x∨0 y is equal to (g ◦ f)(x∨ y), and the greatest lower bound is
x ∧ y, where ∨ and ∧ indicate that bounds are taken in Y .

Proof. As g ◦f is a closure operator on the set g(Y ) of closed elements in X,
the result is a straightforward consequence of the previous theorem.

Clearly, there is a similar statement for the case in which (Z,V) is a lattice.
We now turn back to the Galois connection of a relation.

8.3.9 Theorem. Let R be a relation from a set X to a set Y . The anti-
isomorphic ordered sets of closed elements of the Galois connection of R are
lattices.

Proof. This is a direct application of Corollary 8.3.8, since both (2X ,⊆) and
(2Y ,⊆) are lattices.

The last result has important applications in a class of situations where the
data can be represented by a relation between two sets. Without going into
much detail, we point out that the lattice of closed elements in 2X obtained in
Theorem 8.3.9 admits a description in other, maybe more appealing, terms.
Its elements can be identified with the maximal rectangles of the relation R,
one of these rectangles, say (A,B), being smaller (in the lattice order) than
another, say (C,D), iff A ⊆ C iff B ⊇ D. For a particular case, notice that R

is a biorder (in the sense of Definition 4.2.1) iff its lattice is a chain.

8.3.10 Definition. Let R be a relation from X to Y . The lattice of closed
elements in 2X of the Galois connection of R is the Galois lattice or concept
lattice of R.

The first term appears in Birkhoff (1967), Matalon (1965), and Barbut
and Monjardet (1970), while the second was popularized by the Darmstadt
school, see Ganter and Wille (1996).
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8.3.11 Example. Going back to the relation R in Example 8.3.2, we display
in Figure 8.1 the Hasse diagram of the Galois lattice of R. Each node desig-
nates a maximal rectangle (A,B), specified by listing the elements in the sub-
set A of X = {a, b, c, d, e} and the elements in the subset B of Y = {p, q, r, s},
with the − sign signaling the absence of such elements.

abcdef,−

abde, s
abc, p

ad, qs
ab, ps

be, rs

a, pqs

−, pqrs

b, prs

Figure 8.1. The Galois lattice of relation R in Example 8.3.11.

8.4 Knowledge Structures and Binary Relations

As will be shown in Corollary 8.4.3, Birkhoff’s Theorem 3.8.3 arises as a case
of Theorem 8.2.4 in which the sets Y and Z are, respectively, the set K of all
knowledge structures on a domain Q, and the set R of all binary relations
on Q. This formulation, which is due to Monjardet (1970), clarifies the special
role played by the quasi orders, and the exact correspondence between the
concepts involved.

8.4.1 Definition. Consider the set R of all binary relations on a set Q, or-
dered by inclusion. Let R 7→ t(R) be the mapping of R to itself, defined by

t(R) =
∞⋃
k=0

Rk.

As definined in 1.6.4, t(R) is the (reflexo-)transitive closure of R. It can be
verified that t is a closure operator on (R,⊆) (Problem 6). The closed ele-
ments are the quasi orders. The mapping t will be called the transitive closure
operator on (R,⊆).
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As before, we denote by K the set of all knowledge structures on a set Q.
We associate to any K ∈ K the smallest quasi ordinal space u(K) including K.
The closure operator u will be referred to as the quasi ordinal closure operator
on (K,⊆). The closed elements are the quasi ordinal spaces. (See Problem 6).

8.4.2 Theorem. Consider the set K of all knowledge structures on a nonempty
set Q, and the set R of all binary relations on Q, both being ordered by in-
clusion. Let K 7→ r(K) be a mapping from K to R defined by

p r(K) q ⇐⇒ Kp ⊇ Kq (8.6)

where p, q ∈ Q. For R ∈ R, let k(R) be the knowledge structure on Q defined
from R by

K ∈ k(R) ⇐⇒ (∀(p, q) ∈ R : q ∈ K ⇒ p ∈ K). (8.7)

Thus, R 7→ k(R) is a mapping from R to K. Then, the pair (r, k) is a Galois
connection between (K,⊆) and (R,⊆). Moreover, k ◦ r is the quasi ordinal
closure operator on (K,⊆) and r ◦ k is the transitive closure operator on
(R,⊆). The closed elements are respectively the quasi ordinal spaces in K,
and the quasi orders in R.

The proof of this Theorem is given in 8.4.4. In this framework, the corollary
below is a minor improvement of Birkhoff’s Theorem 3.8.3. It shows that the
one-to-one correspondence is actually an anti-isomorphism.

8.4.3 Corollary. Let (r, k) be the Galois connection of Theorem 8.4.2. Then,
the restriction r0 of r to the set Kso of all quasi ordinal spaces on Q is an
anti-isomorphism from the lattice (Kso,⊆) onto the lattice (Ro,⊆) of all quasi
orders on Q. The inverse mapping r−1

0 is the restriction of k to Ro. Moreover,
the image r0(K) of any ordinal knowledge space K is a partial order.

This immediately results from Theorems 8.4.2 and 8.2.4(v), together with
Corollary 8.3.8 (notice that (K,⊆) and (R,⊆) are lattices).

8.4.4 .Proof of Theorem 8.4.2. We first establish that (r, k) is a Galois
connection. Because (K,⊆) and (R,⊆) are ordered sets, Conditions (i) and
(ii) in Definition 8.2.3 are trivially true. Conditions (iii)-(vi) correspond to
Conditions (a) to (d) below:

(a) K ⊆ K′ =⇒ (∀p, q ∈ Q : K′p ⊇ K′q ⇒ Kp ⊇ Kq);

(b) R ⊆ R′ =⇒
(
∀S ⊆ Q : S ∈ k(R′) ⇒ S ∈ k(R)

)
;

(c) K ⊆ (k ◦ r)(K);

(d) R ⊆ (r ◦ k)(R).

We prove these four conditions.
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(a) Take any p, q ∈ Q and suppose that K ∈ Kq, with K ⊆ K′ and
K′p ⊇ K′q. Successively, K ∈ K′, K ∈ K′q (since q ∈ K), K ∈ K′p, p ∈ K,
yielding K ∈ Kp (since K ∈ K).

(b) Suppose that S ∈ k(R′), with R ⊆ R′. By Equation (8.7), S is a state
of k(R′) if and only if whenever pR′q then q ∈ S ⇒ p ∈ S. We must show
that S is also a state of k(R). Take any p, q ∈ Q and suppose that pRq; thus
pR′q, which implies q ∈ S ⇒ p ∈ S (since S is a state of k(R′)). Applying
Equation (8.7), we obtain S ∈ k(R).

(c) Successively,

K ∈ K =⇒ ∀p, q ∈ Q : (Kp ⊇ Kq, q ∈ K)⇒ p ∈ K
⇐⇒ ∀p, q ∈ Q :

(
p r(K) q, q ∈ K

)
⇒ p ∈ K [by (8.6)]

⇐⇒ K ∈ (k ◦ r)(K). [by (8.7)]

(d) For all p, q ∈ Q,

pRq =⇒ ∀K ∈ 2Q :
(
K ∈ k(R), q ∈ K

)
⇒ p ∈ K [by (8.7)]

⇐⇒ ∀K ∈ 2Q : K ∈
(
k(R)

)
q
⇒ K ∈

(
k(R)

)
p

⇐⇒
(
k(R)

)
p
⊇
(
k(R)

)
q

⇐⇒ p (r ◦ k)(R) q. [by (8.6)]

Since (r, k) is a Galois connection, by Theorem 8.2.4(i), k ◦ r and r ◦ k
are closure operators on (K,⊆) and (R,⊆), respectively. The following two
conditions derive from Definition 8.2.1(i):

(e) K ⊆ K′ ⇒ (k ◦ r)(K) ⊆ (k ◦ r)(K′);
(f) R ⊆ R′ ⇒ (r ◦ k)(R) ⊆ (r ◦ k)(R′).

Now, from Equation (8.6), it is clear that, for any knowledge structure K,
r(K) is a quasi order on Q. By Equation (8.7), k(R) is a quasi ordinal space
for any relation R on Q. In particular, (k◦r)(K) is a quasi ordinal space on Q.
Moreover, it is the smallest quasi ordinal space including K. Indeed, for any
quasi ordinal space K′ on Q, it is easily seen that (k ◦ r)(K′) = K′. Hence, if
K′ includes K, Condition (e) yields

(k ◦ r)(K) ⊆ (k ◦ r)(K′) = K′.

Thus, k ◦ r is the quasi ordinal closure on (K,⊆).

We turn to the closure operator r◦k. By Condition (d) and Equation (8.6),
(r◦k)(R) is a transitive relation including R. To prove that r◦k is the transitive
closure operator on (R,⊆), we have to show that, for any R ∈ R and any quasi
order R′ including R, we have

(r ◦ k)(R) ⊆ R′.

If R′ is a quasi order, then (r ◦ k)(R′) = R′ (as can be checked easily). Thus,
R ⊆ R′ implies
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(r ◦ k)(R) ⊆ (r ◦ k)(R′) [by Condition (f)]

= R′.

Finally, the fact that Ro and Kso are the closed elements of R and K, respec-
tively, results from Theorem 8.2.4(iv).

We now rephrase Definitions 3.8.6 and 3.7.1.

8.4.5 Definition. Referring to the mappings described in Theorem 8.4.2, we
say that the quasi ordinal space k(R) is derived from the relation R, and
similarly that the quasi order r(K) is derived from the knowledge structure K.
Notice that r(K) is the surmise relation (or precedence relation) of K.

8.5 Granular Knowledge Structures and Granular
Attributions

In Theorem 3.8.3, quasi ordinal knowledge spaces were put in a one-to-one
correspondence with quasi orders. We just showed that this correspondence
could be derived from a Galois connection (cf. Corollary 8.4.3). We discuss
another Galois connection here, from which we will obtain a different proof of
the one-to-one correspondence already established in Chapter 5 between the
collection Ksg of all granular knowledge spaces on a set Q and the collection
Fs of all surmise functions on Q (cf. Theorem 5.2.5).

The starting point is the construction of Definition 5.2.1. For any granular
knowledge structure (Q,K), we defined there a derived surmise function σ on
the set Q by setting, for any q in Q,

C ∈ σ(q) ⇐⇒ C is an atom at q.

On the other hand, according to Definition 5.2.3, each attribution σ on the
nonempty set Q produces a derived collection K of knowledge states on Q.
This collection K consists of all subsets K of Q satisfying

∀q ∈ K, ∃C ∈ σ(q) : C ⊆ K.

However, the resulting knowledge space is not necessarily granular.

8.5.1 Example. Let Q be an infinite set of items, and let σ be the attribution
mapping each item to the collection of all infinite subsets of Q. (Thus, the
attribution σ is constant.) The knowledge space derived from σ consists of all
infinite subsets of Q, plus the empty set. This space has no atom whatsoever.

8.5.2 Definition. An attribution is granular when the knowledge space it
produces is granular. We denote by Fg the set of all granular attributions on
the nonempty set Q.
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We do not have a direct characterization of granular attributions (see
the Open Problem 18.3.2). Such a characterization would be useful for the
next Galois connection, which is between the collection Kg of all granular
knowledge structures on Q and the collection Fg of all granular attributions
on Q. The definition of a Galois connection (cf. 8.2.3) requires that these
sets be first equipped with a quasi order. Here, Kg will be taken with the
inclusion relation. On Fg, we take a relation - similar to the one introduced
in Definition 5.5.1, with for σ, σ′ in Fg:

σ′ - σ ⇐⇒ (∀q ∈ Q,∀C ∈ σ(q),∃C ′ ∈ σ′(q) : C ′ ⊆ C).

8.5.3 Theorem. With Kg denoting the collection of all granular knowledge
structures on some nonempty domain Q, and Fg the collection of all granular
attributions on Q, consider the two mappings a : Kg → Fg and g : Fg → Kg

defined as follows. The image a(K) of a granular knowledge structure K is the
attribution that associates to any question q the set of all atoms at q in K.
For any granular attribution σ, the image g(σ) is the knowledge structure
consisting of all subsets K of Q such that

∀q ∈ K, ∃C ∈ σ(q) : C ⊆ K.

Then the pair (a, g) of mappings forms a Galois connection between the
quasi ordered sets (Kg,⊆) and (Fg,-). The closed elements of this Galois
connection are respectively in Kg the granular knowledge spaces, and in Fg

the surmise functions. Moreover, the Galois connection induces between the
two sets of closed elements the one-to-one correspondence obtained in Theo-
rem 5.2.5.

Proof. First notice that for K ∈ Kg, we have a(K) ∈ Fg (see Problem 9). All
six conditions in Definition 8.2.3 for a Galois connection are easily established
(Problem 10). It is also straightforward to check that all the closed elements
in Kg are spaces, and that all the closed elements in Fg are surmise functions.
To show that any granular knowledge space K is a closed element in Kg, we
have to show that (g ◦ a)(K) = K. The inclusion (g ◦ a)(K) ⊇ K is true
because (a, g) is a Galois connection. For the reverse inclusion, notice that if
K ∈ (g ◦a)(K), then K is a union of clauses of a(K), thus a union of elements
(in fact, atoms) of K. As K is a space, it must contain K.

We now prove that (a ◦ g)(σ) = σ for any surmise function σ. If q ∈ Q,
any σ-clause C for q is a state in g(σ); moreover, there can be no element K ′

of g(σ) such that q ∈ K ′ ⊂ C (since no σ-clause for q could be included in
K ′). Thus C ∈

(
(a ◦ g)(σ)

)
(q). Conversely, if C ∈

(
(a ◦ g)(σ)

)
(q), then C is

an element of g(σ) which is minimal for the property q ∈ C. We leave to the
reader to verify that C ∈ σ(q).

The proof of the last sentence of the statement is also left to the reader.
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8.5.4 Definition. In the notation of Theorem 8.5.3, (g ◦ a)(K) is the spatial
closure of the granular knowledge structure K, while (a ◦ g)(σ) is the surmise
closure of the granular attribution σ. Note that (g ◦ a)(K) coincides with the
space spanned by K.

For relations cast as (necessarily granular) attributions (cf. Definition 5.1.4),
it is easy to check that the surmise closure of a relation is exactly the transi-
tive closure of this relation. We now state two properties of the spatial closure
with respect to resolubility or acyclicity (in the sense of Definitions 5.6.2 and
5.6.12). The proof of the next theorem is left as Problem 11.

8.5.5 Theorem. A granular attribution is resoluble if and only if its surmise
closure is resoluble.

8.5.6 Theorem. If σ is a granular, acyclic attribution on a nonempty, finite
set Q, then its surmise closure (a ◦ g)(σ) is also acyclic.

Proof. Setting τ = (a ◦ g)(σ), we assume that the relation Rσ (cf. 5.6.10)
is acyclic and we prove by contradiction that Rτ is also acyclic. If x1, . . . , xk
is a cycle for Rτ , there is (by definition of Rτ ) a clause Ci in τ(xi+1) that
contains xi (for a cyclic index i with i = 1, . . . , k). The thesis will result from
the existence, for each value of i, of items yi1, . . . , y

i
`i

such that

x1Rσy
1
1 , y1

1Rσy
1
2 , . . . , y1

`1Rσx2,

x2Rσy
2
1 , y2

1Rσy
2
2 , . . . , y2

`2Rσx3,

. . . ,

xkRσy
k
1 , yk1Rσy

k
2 , . . . , yn`nRσx1

(because we have here a cycle of Rσ in contradiction with our assumption).
To construct the finite sequence yi1, . . . , y

i
`i

, we first define a mapping η on
a certain subset D of Ci. By the definition of τ = (a ◦ g)(σ), the clause Ci
in τ(xi+1) is a minimal element in g(σ) among the elements containing xi+1.
In particular, Ci \ {xi} is not a state of σ. There must be some item y in
Ci \ {xi} such that no clause in σ(y) is included in Ci \ {xi}. On the other
hand, Ci being an element of g(σ), there is some clause Ci1 in σ(y) included
in Ci. Thus xi ∈ Ci1. We set η(y) = xi. If y = xi+1, then the construction of
η is completed, with D = {xi, xi+1}. If y 6= xi+1, we initialize D to {xi, y}.
Then Ci \D is not a state of σ, but contains xi+1. Again since Ci ∈ g(σ) but
Ci \ D /∈ g(σ), there is some item y′ such that y or xi belongs to a clause
in σ(y′). We add y′ to D, and set η(y′) equal to y or xi accordingly. The
same construction for an increasing set D is repeated until D contains xi+1

(which must happen at some time since Ci is finite). Clearly, there exists
then a sequence z1 = η(xi+1), z2 = η(z1), . . . , z` = η(z`−1) with moreover
η(z`) = xi. We set yij = z`−j+1 for j = 1, . . . , `.

The construction of the finite sequence yi1, . . . , y
i
`i

will be carried out for
each value of the cyclic index i.

The next example shows that the converse of Theorem 8.5.6 does not hold.
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8.5.7 Example. Define an attribution σ on Q = {a, b, c, d} by

σ(a) =
{
{a}
}
, σ(b) =

{
{a, b}, {b, d}

}
,

σ(c) =
{
{a, c}

}
, σ(d) = {Q}.

The relation Rσ is not acyclic (since b, d is a cycle), and so σ is not an acyclic
attribution. The surmise closure τ of σ is acyclic, however. It is given by

τ(a) =
{
{a}
}
, τ(b) =

{
{a, b}

}
,

τ(c) =
{
{a, c}

}
, τ(d) = {Q}.

The same example shows that the relation Rτ attached to the surmise
closure τ of an attribution σ can differ from the transitive closure of the
relation Rσ.

8.6 Knowledge Structures and Associations

Theorem 7.1.5 describes a one-to-one correspondence α between the collection
of all knowledge spaces on Q and the collection of all entailments for Q. An-
other one-to-one correspondence links the latter collection with that of entail
relations for Q (Theorem 7.2.1 and Definition 7.2.2). So, composing these two
correspondences, we also have a one-to-one correspondence β between the col-
lection of all knowledge spaces on Q and the collection of all entail relations
for Q. Each of the correspondences α and β can be produced from a specific
Galois connection. We deal below with the case of α, leaving the case of β to
the reader as Problem 12.

8.6.1 Definition. Let Q be a nonempty set. Define as follows a mapping v
from the collection K of all knowledge structures on Q to the collection E of
all relations from 2Q to Q, where for K ∈ K:

v(K) = P ⇐⇒(
∀A ∈ 2Q,∀q ∈ Q : APq ⇔ (∀K ∈ K : q ∈ K ⇒ K ∩A 6= ∅)

)
. (8.8)

The relations from 2Q to Q will be called association relations, or in short
associations. Notice that if K is a knowledge space, then v(K) is exactly
its derived entailment (cf. Definition 7.1.6). When K is a general knowledge
structure, we also say that v(K) is derived from K.

Define then a mapping ` : E→ K by setting for P ∈ E:

`(P) = {K ∈ 2Q ∀r ∈ Q,∀B ⊆ Q : (BPr and r ∈ K)⇒ B ∩K 6= ∅}. (8.9)

The knowledge structure `(P) is said to be derived from P. A similar con-
struction was encountered in Equation (7.3) of Theorem 7.1.5.
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8.6.2 Theorem. Let Q be a nonempty set. The mappings v : K → E and
` : E→ K form a Galois connection if both K and E are ordered by inclusion.
The closed elements in K form the lattice (Ks,⊆) of all knowledge spaces
on Q; the closed elements in E form the lattice (Ee,⊆) of all entailments. The
anti-isomorphisms induced by v and ` between these two lattices provide the
one-to-one correspondence in Theorem 7.1.5.

Proof. Conditions (i) and (ii) in the Definition 8.2.4 of a Galois connection
are automatically satisfied because the inclusion relation, either on K or on E,
is a partial order. The other conditions are easily derived from the definitions
of v and ` in Equations 8.8 and (8.9).

To show that the closed elements in K constitute the collection Ks of
all knowledge spaces on Q, it suffices to establish `(E) = Ks. The inclusion
`(E) ⊆ Ks is easily obtained. The opposite inclusion follows from the fact that
K = (`◦v)(K) for any space K on Q; notice that K ⊆ (`◦v)(K) holds because
(v, `) is a Galois connection, while (` ◦ v)(K) ⊆ K is proved as follows. If
L ∈ (` ◦ v)(K) \ K, let K be the largest state of the space K included in L.
Picking r in L \K and setting B = Q \ L, we get both B v(K) r and r ∈ L,
contradicting L ∈ (` ◦ v)(K).

Similarly, to prove that the closed elements in E constitute the collection
Ee of all entailments, it suffices to show that v(K) = Ee. We leave this to the
reader.

Finally, as (Ks,⊆) clearly is a lattice, we may apply Corollary 8.3.8.

All the Galois connections introduced in the chapter for the various struc-
tures at the focus of this monograph are recorded in Table 8.3.

Table 8.3. The three Galois connections subsuming the one-to-one correspondences
recalled in Table 8.1: names and notation for the domains and the closed sets.
Columns headings are as follows:

1: Theorem number
2 and 5: Name of mathematical structure
3 and 4: Notation for the collection

1 2 3 4 5

8.4.2 knowledge structure K R relation

quasi ordinal space Kso Ro quasi order

8.5.3 granular knowledge structure Kg Fg granular attribution

granular knowledge space Ksg Fs surmise function

8.6.2 knowledge structure K F association

knowledge space Ks Ee entailment
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8.7 Original Sources and Related Works

For background on Galois connections, we refer the reader to Birkhoff (1967)
or Barbut and Monjardet (1970), for instance. The concept of a Galois con-
nection is closely related to that of a ‘residuated mapping’, see e.g. Blyth
and Janowitz (1972). Definition 8.2.3 slightly extends the concept of a Ga-
lois connection, by allowing quasi ordered sets instead of ordered sets. This
construction comes from Doignon and Falmagne (1985)2.

The idea of deriving Birkhoff’s Theorem from a Galois connection is due to
Monjardet (1970) (cf. our Corollary 8.4.3). The other applications given here
of the theory of Galois connections, namely Theorems 8.5.3 and 8.6.2, come
respectively from Doignon and Falmagne (1985, in the finite case), and Kop-
pen and Doignon (1990). We have mentioned in passing the field of concept
lattices, or Galois lattices. On this subject, we refer the reader to Matalon
(1965) or Barbut and Monjardet (1970) and especially to Ganter and Wille
(1996). Rusch and Wille (1996) have pointed out several relationships between
the study of concept lattices and our investigation of knowledge spaces. An-
other link was mentioned in the Sources section of Chapter 1, namely Dowling
(1993b) and Ganter (1984, 1987, see also Ganter, 1991). Algorithms can be
reformulated in order to perform each other’s task (see Problem 8).

Problems

1. Let K be the set of all knowledge structures on a set Q. Prove that any
intersection of knowledge spaces in K is a knowledge space, and that the
mapping s of Example 8.2.2(a) is a closure operator on (K,⊆), the knowl-
edge spaces being the closed elements.

2. If a knowledge structure is closed under intersection, is the same true for
its spatial closure?

3. Check that the mapping h : 2Q → 2Q : A 7→ h(A) = A′ of Exam-
ple 8.2.2(b) is a closure operator, with the elements of L being the closed
elements.

4. Complete the proof of Theorem 8.2.4.

5. Does the Galois lattice of a relation determine this relation? Consider the
case in which the elements of the lattice are marked as in Figure 8.1.

6. Prove that the function t of Definition 8.4.1 is a closure operator, with
the quasi orders on Q forming the closed elements. Prove that u is also
a closure operator, with the quasi ordinal spaces on Q being the closed
elements.

2 Note that a mistake in Proposition 2.7(iv) in this paper was pointed out by
J. Heller.
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7. Construct the Galois lattice of the following relations:
a) the identity relation from a set to the same set;
b) the membership relation from a set Q to its power set 2Q;
c) the relation defined by the table below.

Table 8.4. The 0-1 array for the relation in Problem 7 (c).

p q r s

a 1 1 0 1

b 1 0 1 1

c 1 0 0 0

d 1 1 0 1

8. Design an algorithm to compute the Galois lattice of a relation between
two finite sets. Show that such an algorithm can be directly derived from
Algorithm 3.5.5 (which constructs a knowledge space from any of its span-
ning families).

9. Let a be the mapping defined in Theorem 8.5.3. Show that for any granular
knowledge structure K, the image a(K) is a granular attribution.

10. Complete the proof of Theorem 8.5.3.

11. Prove Theorem 8.5.5.

12. Establish a Galois connection between knowledge structures and entail
relations from which follows the one-to-one correspondence β mentioned
before Definition 8.6.1.

13. Show that mappings f : Y → Z and g : Z → Y between ordered sets
(Y,U) and (Z,V) form a Galois connection iff for all y in Y and z in Z:

yUg(z) ⇐⇒ zVf(y)

(O. Schmidt, see Birkhoff, 1967, p. 124). Give a similar result for the
general case in which (Y,U) and (Z,V) are quasi ordered sets. Use this
other characterization of Galois connections to work out different proofs
of results of this chapter.

14. A lattice (L,-) is complete if any family (possibly infinite) of elements
of L admit a greatest lower bound and a least upper bound (define these
terms). Does Theorem 8.3.7 extend to complete lattices? Find examples
of complete lattices among the collections of objects studied in this mono-
graph.
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Descriptive and Assessment Languages*

How can we economically describe a state in a knowledge structure? The
question is inescapable because, as pointed out earlier, realistic states will
typically be quite large. In such cases, it is impractical to describe a state by
giving the full list of items that it contains. It is also unnecessary: because
of the redundancy in many real-life knowledge structures1, a state will often
be characterizable by a relatively small set of features. This idea is not new.
In Chapter 4, we proved that any state in a well-graded knowledge struc-
ture could be fully described by simply listing its inner and outer fringes
(cf. Theorem 4.1.7 and Remark 4.1.8(a)). Here, we consider this issue more
systematically. This chapter is somewhat eccentric to the rest of this book
and can be skipped without harm at first reading. We begin by illustrating
the main ideas in the context of a simple example encountered earlier.

9.1 Languages and Decision Trees

9.1.1 Example. Consider the knowledge structure

G =
{
∅, {a}, {b, d}, {a, b, c}, {b, c, e}, {a, b, d},

{a, b, c, d}, {a, b, c, e}, {b, c, d, e}, {a, b, c, d, e}
}

(9.1)

on the domain Q = {a, b, c, d, e}. It was already used in Example 5.1.1 and
is in fact a discriminative knowledge space. The state {a, b, c, e} is the only
state of G containing a, e and not d. It can be characterized by stating that
{a, b, c, e} is a particular state K of G satisfying

a ∈ K, d /∈ K and e ∈ K. (9.2)

1 For example, the domain of the learning space for beginning algebra used by the
ALEKS system and discussed in Chapter 17 contains around 300 items, while the
number of knowledge states does not exceed a few millions, which is a minute
fraction of 2300, the number of subsets of a set of size 300.

J.-C. Falmagne, J.-P. Doignon, Learning Spaces, 
DOI 10.1007/978-3-642-01039-2_9, © Springer-Verlag Berlin Heidelberg 2011 



152 9 Descriptive and Assessment Languages*

Similarly, the state M = {b, c, d, e} is specified by the statement

a /∈M and d, e ∈M. (9.3)

We now adopt a compact notation. We shall represent (9.2) and (9.3) by
the strings ad̄e and āde, respectively. Extending this notation, we can, for
example, represent all the states of G by the strings listed in Table 9.1.

Table 9.1. The states of G and their representing strings.

States Strings

{a, b, c, d, e} ade

{a, b, c, d} acdē

{a, b, c, e} ad̄e

{a, b, c} acd̄ē

{a, b, d} ac̄d

{a} ab̄

{b, c, d, e} āde

{b, c, e} ād̄e

{b, d} āc̄d

∅ āb̄

Such strings are referred to as ‘words.’ The set of words

G1 = { ade, acdē, ad̄e, acd̄ē, ac̄d, ab̄, āde, ād̄e, āc̄d, āb̄ }

is called a ‘descriptive language’ (for G). Some descriptive languages are of par-
ticular interest in the framework of this monograph because they symbolize
sequential procedures for recognizing the states. Such languages can in prin-
ciple be used in assessing the knowledge states of individuals. For example,
the language

G2 = { acde, acdē, acd̄e, acd̄ē, ac̄d, ac̄d̄, āed, āed̄, āēb, āēb̄ }

also specifies the states of G, but with words satisfying certain rules. Notice
that every word of G2 begins with a or ā. Also, in any word beginning with a,
the next symbol is either c or c̄. Similarly, if a word begins with ā, the next
symbol is either e or ē, etc. This illustrates a general pattern represented in
Figure 9.1 in the form of a decision tree. The words of G2 are read from the
tree by following the branches from left to right. Each leaf corresponds to a
word specifying a state. Such a tree represents a possible knowledge assessment
procedure.
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e

e
d

{a,b,d}

{a,b,c,e}

{a}
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acd

aed

aed

aeb

aeb

Words States

Figure 9.1. Sequential decision tree corresponding to the language G2 for the
knowledge structure G.

9.1.2 Definition. We recall from 2.1.4 that if K is a knowledge structure and
q is any item, then Kq = {K ∈ K q ∈ K}. We similarly define

Kq̄ = {K ∈ K q /∈ K}. (9.4)

We have thus K = Kq ∪Kq̄.

Beginning at the extreme left node of the tree in Figure 9.1, one could first
check whether the knowledge state of a subject contains a, by proposing an
instance of that item to the subject. Suppose that the subject solves a. We
already know then that the subject’s state is in

Ga =
{
{a}, {a, b, c}, {a, b, d}, {a, b, c, d}, {a, b, c, e}, {a, b, c, d, e}

}
.

The next item proposed is c. Suppose that c is not solved, but that the sub-
ject then solves d. The complete questioning sequence in this case corresponds
to the word ac̄d which identifies the state {a, b, d} because

Ga ∩ Gc̄ ∩ Gd =
{
{a, b, d}

}
.

A language which is representable by a decision tree, such as G2, will be
called an ‘assessment language.’ (We give an exact definition in 9.2.3.)

There are two difficulties with this deterministic approach to the assess-
ment of knowledge in real-life cases. One is that human behavior in testing
situations is often unreliable: subjects may temporarily forget the solution of
a problem that they know well, or make careless errors in responding; they
could also in some situations guess the correct response to a problem not
already mastered. This feature suggests that a straightforward deterministic
decision tree is inadequate as a knowledge assessment device.
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The other difficulty is that we evidently wish to minimize (in some sense)
the number of questions asked in an assessment, which raises the issue of
‘optimality’ of a decision tree. At least two parameters could be minimized.
The first one is the largest number of questions to be asked for specifying any
state. In Figure 9.1, this worst case number or depth of the tree, as it is also
called, equals 4 (and is attained for four states). A second parameter often
used is the average number of questions, which is here 3.4 = (4×4+6×3)/10.
An optimal tree is one that minimizes either the depth or the average num-
ber of internal nodes, depending on the context. The design of an optimal
decision tree for the task at hand is known from theoretical computer science
to be a hard problem—where ‘hard’ is meant in its technical sense, namely
the corresponding decision problem is ‘NP-complete.’ We refer the reader to
the standard text of Garey and Johnson (1979) for a good introduction to
complexity theory; for the particular problem at hand here, our reference is
Hyafill and Rivest (1976) (see in particular the proof of the main result). We
shall not discuss here the various results obtained regarding the construction
of optimal decision trees. The reason is that in our setting, deterministic pro-
cedures (encoded as binary decision trees) rely on the untenable assumptions
that student’s answers truly reflect the student’s knowledge state.

In Chapters 13 and 14, we describe probabilistic assessment procedures
which are more robust than those based on decision trees, and are capable of
uncovering the state even when the subject’s behavior is somewhat erratic.

There are nevertheless some theoretical questions worth studying in a de-
terministic framework, and which are also relevant to knowledge assessment.
For instance, imagine that we observe a teacher conducting an oral exami-
nation of students. Idealizing the situation, suppose that this observation is
taking place over a long period, and that we manage to collect all the se-
quences of questions asked by the teacher. Would we then be able to infer
the knowledge structure relied upon by the teacher? We assume here that all
potential sequences are revealed during the observation, and that the teacher
is correct in assuming that the students’ responses reflect their true knowl-
edge state. An example of the results presented in this chapter is as follows:
if a knowledge structure is known to be ordinal (in the sense of 3.8.1), then it
can be uncovered from any of its assessment languages (cf. Corollary 9.3.6). In
general, an arbitrary structure cannot be reconstructed on the basis of a single
assessment language. Suppose however that we have observed many teachers
for a long time, and that all the assessment languages have been observed.
The corresponding result is that any knowledge structure can be uncovered
from the set of all its feasible assessment languages (cf. 9.4.2).

Our presentation of these results relies on a basic terminology concerning
‘words’, ‘languages’, and related concepts which we introduce in the next
section. This terminology is consistent with that of Formal Language Theory
(as in Rozenberg and Salomaa, 1997, for example)2.

2 Some of the terminology is also used in Chapter 10.
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9.2 Terminology

9.2.1 Definition. We start from a finite set Q which we call alphabet. Any
element in Q is called a positive literal. The negative literals are the elements
of Q marked with an overbar. Thus, for any q ∈ Q, we have the two literals
q and q̄. A string over the alphabet Q is any finite sequence α1, α2, . . . , αn of
literals written as α1α2 . . . αn. Denoting by Σ the set of all literals, we equip
the set Σ∗ of all strings with the associative concatenation operation

(ρ, ρ′) 7−→ ρρ′ ∈ Σ∗ (ρ, ρ′ ∈ Σ∗)

and hence get a semigroup. The neutral element is the empty string, which
we denote by 1. Any subset L of Σ∗ is called a language over Q. An element
ω of a language L is called a word of that language.

A string ρ of Σ∗ is a prefix (resp. suffix) of the language L if ρρ′ (resp. ρ′ρ)
is a word of L for some string ρ′ of Σ∗. A prefix (resp. suffix) ρ is proper if
there exists a nonempty string π such that ρπ (resp. πρ) is a word. For any
string ρ and any language L, we denote by ρL the language containing all
words of the form ρω, for ω ∈ L.

Strings, words, prefixes and suffixes are positive (resp. negative) when they
are formed with positive (resp. negative) literals only. If ρ = α1α2 . . . αn is a
string over the alphabet Q, we set ρ̄ = ᾱ1ᾱ2 . . . ᾱn, with the convention ¯̄α = α
for any literal α.

9.2.2 Example. For Q = {a, b, c, d, e}, we have ten literals. Consider the
language consisting of all words of length at most 2. This language consists of
1 + 10 + 102 words. Every word is both a prefix and a suffix. However, there
are only 1 + 10 proper prefixes, and the same number of proper suffixes. The
language has 1 + 5 + 52 positive words (coinciding with the positive prefixes)
and 1 + 5 positive, proper prefixes.

We recall from Definition 3.3.1 that a collection K on a domain Q is a
family of subsets of Q. We also write (Q,K) to denote the collection and call
states the elements of K. Thus, a knowledge structure (Q,K) is a collection
K which contains both ∅ and Q. Notice that a collection may be empty.
Generalizing Definition 2.4.2, we call projection of a collection (Q,K) on a

subset A of Q the family K|A = {K∩A K ∈ K}. The meaning of “trace” and
of Kq and Kq̄ are the same for collections and for structures (cf. Definitions
2.1.4 and 9.1.2).

We assume in this chapter that the domain Q is finite.

9.2.3 Definition. An assessment language for the collection (Q,K) is a lan-
guage L over the alphabet Q that is empty if |K| = 0, has only the word 1 if
|K| = 1, and otherwise satisfies L = qL1 ∪ q̄L2, for some q in Q, where

[A1] L1 is an assessment language for the projection (Kq)|Q\{q};
[A2] L2 is an assessment language for the collection Kq̄ with domain Q\{q}.
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It is easily verified that the words of an assessment language L for K are
in a one-to-one correspondence with the states of K (see Problem 2). Fig-
ure 9.1 lists the words of an assessment language for the knowledge structure
of Equation (9.1).

We can also characterize assessment languages nonrecursively, by specific
properties. The following concept is instrumental in that respect.

9.2.4 Definition. A binary classification language over a finite alphabet Q
is a language L which satisfies the two following conditions:

[B1] a literal may not appear more than once in a word;
[B2] if π is a proper prefix of L, then there exist exactly two prefixes of the

form πα and πβ, where α and β are literals; moreover ᾱ = β.

Condition [B1] implies that L does not contain any word of the form πxρxσ
or πxρx̄σ with x a literal and π, ρ, σ strings. Consequently, a binary classifi-
cation language L is finite. Notice that the empty language and the language
consisting of the single word 1 are both binary classification languages: they
trivially satisfy Conditions [B1] and [B2].

9.2.5 Theorem. For any proper prefix ρ of a nonempty binary classification
language L, there exist a unique positive suffix ν and a unique negative suffix
µ such that ρν, ρµ ∈ L. In particular, L has exactly one positive and one
negative word.

The proof is left as Problem 4. We now show that the conditions in Defi-
nition 9.2.4 provide a nonrecursive characterization of assessment languages.

9.2.6 Theorem. Any assessment language is a binary classification language.
Conversely, any binary classification language is an assessment language for
some collection.

Proof. It is easily shown that an assessment language L for the collection
K on Q is a binary classification language over the alphabet Q. Conversely,
suppose that L is a binary classification language over Q that contains more
than one word. Then the word 1 is a proper prefix, and by Condition [B2]
of Definition 9.2.4, there is a letter q such that all words are of the form qπ
or q̄σ for various strings π and σ. Notice that L1 = {π qπ ∈ L} is again a
binary classification language, this time over the alphabet Q\{q}. Proceeding
by induction, we infer the existence of a collection K1 on Q \ {q} for which
L1 is an assessment language. Similarly, L2 = {π q̄π ∈ L} is an assessment
language for some collection K2 on Q \ {q}. It is easily verified that L is an
assessment language for the collection {K ∪ {q} K ∈ K1} ∪K2.

A class of languages less restrictive than the assessment languages, or
equivalently the binary classification languages, will be used in the next sec-
tion. We proceed to define it.
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9.2.7 Definition. Let K be a collection on Q and let L be a language over Q.
We write α ` ω to mean that α is a literal of the word ω. A word ω describes
a state K if K is the only state that satisfies

for any x ∈ Q : (x ` ω ⇒ x ∈ K) and (x̄ ` ω ⇒ x /∈ K).

The language L is a descriptive language for the collection K when the two
following conditions hold:

[D1] any word of L describes a unique state in K;
[D2] any state in K is described by at least one word of L.

We may also say for short that L describes K.
Every assessment language is a descriptive language. While the words of

an assessment language for a collection K are in a one-to-one correspondence
with the states of K, we only have a surjective mapping from a descriptive
language for K onto K.

We denote by ASL(K) and DEL(K) the collections of all the assessment
languages and all the descriptive languages for K, respectively. We also write
(Q,K) for the dual collection of a collection (Q,K), with K = {Q\K K ∈ K}.
(This extends the notation and terminology introduced in Definition 2.2.2 in
the case of a structure.) For any language L we define the corresponding
language L̄ = {α ᾱ ∈ L}. (Remember our convention that ¯̄α = α for any
literal α.) In Problem 5, we ask the reader to establish the two equivalences

L ∈ ASL(K) ⇐⇒ L̄ ∈ ASL(K),

L ∈ DEL(K) ⇐⇒ L̄ ∈ DEL(K).

9.3 Recovering Ordinal Knowledge Structures

We prove here that any (partially) ordinal space (Q,K) can be recovered
from any of its descriptive languages, and thus also from any of its assessment
languages. In this section, we will denote by P a partial order on Q from which
K is derived (in the sense of Definition 3.8.4), and by H the covering relation
or Hasse diagram of P (cf. 1.6.8). Maximality and minimality of elements of
Q are understood with respect to P. We will use K(q) = ∩Kq to denote the
smallest state that contains item q. (In the language of Definition 3.4.5, K(q)
is thus an atom at q, which is unique in this case.) Finally, L will stand for a
descriptive language for K.

9.3.1 Lemma. The following two statements are true for any word ω of L
describing the state K from K:

(i) if x is a maximal element of K, then x ` ω;
(ii) if y is a minimal element of Q \K, then ȳ ` ω.
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Proof. If x is maximal in K, then K \{x} is a state of K. As ω distinguishes
between K and K \{x}, we conclude that x ` ω. Since K∪{y} is also a state,
the second assertion follows from a similar argument.

9.3.2 Corollary. For each q in Q, the language L uses both literals q and q̄.

Proof. The smallest state K(q) containing q has q as a maximal element.
Moreover, K(q)\{q} is a state whose complement has q as a minimal element.

9.3.3 Theorem. Define a relation S on Q by declaring qSr to hold when the
two following conditions are satisfied:

(i) there exists some word ω of L such that q ` ω and r̄ ` ω;
(ii) there is no word ρ of L such that both q̄ ` ρ and r ` ρ.

Let P̂ denote the strict partial order obtained from P by deleting all loops.
Then, we necessarily have

H ⊆ S ⊆ P̂. (9.5)

Proof. Assume qHr and set K = K(r) \ {r}. Then K is a state having q as
a maximal element; also, r is a minimal element in Q \K. By Lemma 9.3.1,
any word ω describing K makes Condition (i) true. Moreover, Condition (ii)
also holds since qHr implies that any state containing r also contains q. This
establishes H ⊆ S.

Assume now qSr. Take any state K described by the word ω whose exis-
tence is asserted in Condition (i). As q ∈ K and r /∈ K, we have q 6= r and
rPq cannot hold. It only remains to show that q and r are comparable with
respect to P. If this were not the case, (K(q) \ {q}) ∪K(r) would be a state
K ′ having r as a maximal element; moreover, q would be minimal in Q \K ′.
Any word describing K ′ would then contradict Condition (ii).

Each of the two inclusions in Equation 9.5 can be either strict or an equal-
ity, as shown by the following two examples.

9.3.4 Example. Consider the set Q = {a, b, c} equipped with the alphabeti-
cal order P. Figure 9.2 specifies an assessment language for the corresponding
ordinal structure K; here we have H ⊂ S = P̂.

9.3.5 Example. Figure 9.3 describes another assessment language for the
same ordinal knowledge structure as in previous example. Here, we have
H = S ⊂ P̂.
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Figure 9.2. Decision tree, words and states from Example 9.3.4.
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Figure 9.3. Decision tree, words and states from Example 9.3.5.

9.3.6 Corollary. If a finite knowledge structure is known to be ordinal, it
can be recovered from any of its descriptive languages.

Corollary 9.3.6 is the main result of this section. It readily follows from
Theorem 9.3.3: P is always the transitive closure of S.
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9.3.7 Remarks. A language can describe two distinct knowledge structures
only one of which is ordinal. Such a case is described by Figure 9.4.

a

e

b
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c
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{a,b}

{a}

{a,b,c}

{a,b,c,d }

{a,b,c,d,e}

{c}

{c,d }

{a,b,c,d,e}

Words

e

d

c

a

b {b}

{a}

K1 K 2

Figure 9.4. Decision tree, words and states from two distinct knowledge structures,
each one described by the same language (cf. Remark 9.3.7). Only K1 is ordinal.

9.4 Recovering Knowledge Structures

As the example in Figure 9.4 indicates, a knowledge structure cannot be
recovered from just one of its assessment languages (except if it is known
to be ordinal, cf. Corollary 9.3.6). We will prove by induction on the number
of items that any structure K can be recovered from the complete collection
ASL(K) of all its assessment languages.

9.4.1 Lemma. Suppose that A ⊆ Q and let LA be an assessment language
for the projection K|A. There exists an assessment language L for K such that

(i) in each word of L, the letters from A precede the letters from Q \A;
(ii) truncating the words from L to their literals from A give all the words in

LA (possibly with repetitions).

Leaving the proof as Problem 7, we derive from 9.4.1 the main result of
this section.
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9.4.2 Theorem. The two following statements are equivalent for any two
knowledge structures (Q,K) and (Q′,K′):

(i) ASL(K) = ASL(K′);
(ii) K = K′.

Proof. (i)⇒ (ii). Suppose that Condition (i) holds. If some item q belongs to
Q but not to Q′, we can use it as the root of a decision tree for K. So, the corre-
sponding assessment language cannot belong to ASL(K′). This contradiction
establishes Q ⊆ Q′, and by symmetry Q′ = Q.

We now prove by induction on |Q| that the negation of Condition (ii)
leads to a contradiction. As Condition (ii) does not hold, select in K 4 K′

a maximal element, say K in K \ K′. Since Q = Q′, we must have K 6= Q.
From Lemma 9.4.1, we have ASL(K|K) = ASL(K′|K), and thus also by the

induction hypothesis K|K = K′|K . Using again Lemma 9.4.1, we construct an
assessment language L for K by taking letters from K systematically before
letters from Q \K. The word ω in L describing K must then be of the form

k1k2 . . . kmȳ1ȳ2 . . . ȳn

with ki ∈ K and yj ∈ Q \K. By our assumption (i), L is also an assessment
language for K′. The word ω describes some state K ′ in K′. In view of the
prefix k1k2 . . . km and of K|K = K′|K , we get K ⊆ K ′. Then from the maxi-

mality of K we derive K ′ ∈ K. Hence the word ω of L describes two distinct
states of K, namely K and K ′, a contradiction.

(ii) ⇒ (i). This is trivial.

9.4.3 Corollary. The two following statements are equivalent:

(i) DEL(K) = DEL(K′);
(ii) K = K′.

9.5 Original Sources and Related Works

The chapter closely follows Degreef, Doignon, Ducamp, and Falmagne (1986).
This paper contains some additional, open questions about how languages
allow to recover knowledge structures. We formulate one of these questions as
Open Problem 18.1.2 in Chapter 18.
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Problems

1. Verify all the numbers in Example 9.2.2.

2. Prove that for any collection K and any assessment language L for K,
there is a one-to-one correspondence between the states of K and the
words of L (cf. Definition 9.2.3).

3. Describe an optimal decision tree for the ordinal knowledge structure de-
rived from a linear order.

4. Give a proof of Theorem 9.2.5.

5. Give a proof of the following two equivalences (see after Definition 9.2.7)

L ∈ ASL(K) ⇐⇒ L̄ ∈ ASL(K),

L ∈ DEL(K) ⇐⇒ L̄ ∈ DEL(K).

6. Prove that if L is a descriptive language for K, then any language formed
by arbitrarily changing the orders of the literals in the words of L is also
a descriptive language for K.

7. Prove Lemma 9.4.1.
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Learning Spaces and Media

A ‘medium’ is a collection of transformations on a set of states, specified
by two constraining axioms. The term “medium” stems from the original
intuition suggesting such a structure, which is that of a system exposed to a
bombardment of bits of information, each of which is capable of modifying its
state in a minute way (Falmagne, 1997). The system could be, for example,
an individual subjected to a barrage of messages from the media—that is,
the press in all its incarnations—regarding the candidates in an election (see
Regenwetter, Falmagne, and Grofman, 1999, for a good example). An account
of such an application is Falmagne, Hsu, Leite, and Regenwetter (2007).

Media generalize learning spaces in the sense that any learning space can
be represented as a particular kind of medium, called an ‘oriented rooted
medium.’ The converse does not hold, however. For instance, a medium may
be uncountable, while a learning space is necessarily finite. The link between
media and learning spaces lies in the wellgradedness property of the latter.
Indeed, it turns out that the states of a medium have a natural representation
as the sets of a well-graded family. The transformations consist then in adding
or removing some element from a set, thereby forming another state. The
distinction between adding an element to a set (a positive transformation)
and removing an element from a set (a negative transformation) makes the
medium oriented.

More specifically, we will show that discriminative, well-graded families
of sets and oriented media are cryptomorphic, in the sense that they can
represent one another faithfully. The technical statement is Theorem 10.4.11.

A detailed presentation of media theory can be found in the monograph
by Eppstein, Falmagne, and Ovchinnikov (2008), published under that title.
We only cover the essentials in this chapter, which focusses of the relationship
between well-graded collections (in particular, learning spaces) and media.

Examples of media abound and may differ widely. We describe some of
them in our first section. We then give the basic definitions and the two
axioms defining a medium. In the following sections, we derive some of the
main results and we characterize the media representing learning spaces.

J.-C. Falmagne, J.-P. Doignon, Learning Spaces, 
DOI 10.1007/978-3-642-01039-2_10, © Springer-Verlag Berlin Heidelberg 2011 
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10.1 Main Concepts of Media Theory

10.1.1 Examples. a) The family P of all partial orders on a finite set X. Each
partial order is a state, and a transformation consists in adding or removing a
pair xy from a partial order, whenever such a transformation results in another
partial order in the family P; otherwise, the transformation returns the same
partial order. Thus, the transformations come in pairs, one of which can undo
the action of the other. As seen in Chapter 4 (Remark 4.2.6(b) and Problem 8),
the family P is well-graded. This implies that, for any two states P and R
in P, there is a minimal sequence of transformations converting P into R.
There may be more than one sequence of such transformations, however. The
medium is the pair (P,T) where T is the family of all the transformations.

b) The family F of all finite subsets of R. This example is similar to the
previous one: the sets in F are the states, a transformation consists in adding
(or removing) a single element to (or from) a set in F, and the family F is well-
graded. The transformations are always effective here1, and while the family
P of the above example is finite, F is uncountable. However, the symmetric
difference distance (cf. 1.6.12) between two finite sets is finite. This implies
that, for any two distinct states S and T in F, there is a finite, minimal
sequence of transformations producing S from T .

Note that in this example and in the previous one, the medium is equipped
with an ‘orientation’ in the sense that there is a natural partition of the
collection of transformations into the two classes respectively gathering the
‘addition’ and ‘removal’ of elements to and from the sets. This feature does
not apply to the next two examples.

c) The family L of all linear orders on a finite set. This family is not
well-graded2. The states are the linear orders and a transformation consists
in removing a pair xy of contiguous elements in a linear order, replacing it by
the opposite pair yx. We denote by τyx such a transformation. In the special
case of the collection of all the linear orders on the set {1, 2, 3, 4}, we thus
have for example, with obvious notation,

4312
τ137−→ 4132

2134
τ317−→ 2314

3142
τ247−→ 3124 .

The graph of such a medium is represented in Figure 10.1, which is reproduced
(with permission and with some added features pictured in red) from Eppstein
et al. (2008, Figure 1.4). In the relevant literature, such a graph is sometimes
referred to as a permutohedron (cf. Bowman, 1972; Gaiha and Gupta, 1977;
Le Conte de Poly-Barbut, 1990; Ziegler, 1995). Note that we omit the loops.

1 Except in the case of the empty set, from which no element can be removed.
2 Rather, it is ‘2-graded’; cf. Definition 10.3.6.
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Figure 10.1. Permutohedron of {1, 2, 3, 4}. Graph of the medium of the set of linear
orders on {1, 2, 3, 4}. Pictured in red, a representation of the transformation τ13.
Notice the location of these six arcs in the graph.

d) Let H be an arrangement of hyperplanes in Rn, that is, a finite collection
of hyperplanes in Rn. The set Rn\∪H is the union of open, convex polyhedral
regions of Rn bounded by the hyperplanes. An example of a line arrangement
in R2, with five lines, is pictured by Figure 10.2. Each of these polyhedral
regions is a state of the medium, and a transformation consists in crossing a
single hyperplane in H. More precisely, to each hyperplane H in H correspond
two ordered pairs (H−, H+) and (H+, H−) of half spaces bounded by H. These
ordered pairs define two transformations τH− and τH+ , where τH− transforms
a state in H− bounded by H into an adjacent state in H+, and τH+ has the
opposite effect. Note that if some polyhedral region X ⊂ H− is not bounded
by H, then the application of either τH+

or τH− to X has no effect. Thus, while
τH− is capable of undoing the effect of τH+

and vice versa, the transformations
are not mutual inverses. Indeed, if a region A satisfies τH+

(A) = B with
A 6= B, then we also have τH+(B) = B and the mapping τH+ cannot be
reversed.

For other examples see Eppstein et al. (2008) (and Problem 1).
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A

B

l
h

j

k

i

Figure 10.2. A line arrangement in the case of five straight lines l, h, i, j, and k
in R2 delimiting sixteen states with ten pairs of transformations. Two direct paths
from state A to state B cross these five lines in two different orders: lhkij (pictured
in blue) and kihjl (in red).

10.1.2 Definition. Let S be a set of states. Let τ : S 7→ Sτ be a function
mapping S into itself. We thus write Sτ = τ(S), and

Sτ1τ2 · · · τn = τn(· · · τ2(τ1(S)) · · · )

for the function composition. Let T be a set of such functions on S. The pair
(S,T) is called a token system if it satisfies the following three conditions:

1. |S| ≥ 2;
2. T 6= ∅;
3. the identity τ0 on S does not belong to T.

The functions in T are called tokens. So, the identity on S is not a token.

A state V is adjacent to a state S if S 6= V and Sτ = V for some token
τ in T. A token τ̃ is a reverse of a token τ if for any two adjacent states S
and V , the following equivalence holds:

Sτ = V ⇐⇒ V τ̃ = S. (10.1)

It is easily verified that a token has at most one reverse. If the reverse τ̃ of τ
exists, then τ and τ̃ are mutual reverses. We thus have ˜̃τ = τ , and adjacency
is a symmetric relation on S (Problem 3).
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The next definition introduces a convenient language. The key concept is
that of a ‘message’ which is a composition of tokens permitting to transform
a state into a not necessarily adjacent one.

10.1.3 Definition. A message in a token system (S,T) is a (possibly empty)
string of tokens from T. A nonempty message m = τ1 . . . τn defines a func-
tion S 7→ Sτ1 · · · τn mapping S into itself. Note that, by abuse of notation,
we also write then m = τ1 · · · τn for the corresponding function composition.
When Sm = V for some states S, V and some message m, we say that
m produces V from S. The content of a message m = τ1 · · · τn is the set
C(m) = {τ1, . . . , τn} of its tokens. We write `(m) = n to denote the length
of the message m. (We thus have |C(m)| ≤ `(m).) A message m is effective
(resp. ineffective) for a state S if Sm 6= S (resp. Sm=S) for the correspond-
ing function S 7→ Sm. A message m = τ1 · · · τn is stepwise effective for S if
Sτ1 · · · τk 6= Sτ0 · · · τk−1, 1 ≤ k ≤ n. A message which is both stepwise effec-
tive and ineffective for some state is called a return message or, more briefy,
a return (for that state).

We say that a message m = τ1 · · · τn is inconsistent if it contains both
a token and its reverse, that is, if τj = τ̃i for some distinct indices i and j;
otherwise, it is called consistent. A message consisting of a single token is
thus consistent by default. Two messages m and n are jointly consistent if
mn (or, equivalently, nm) is consistent. A consistent message, with no token
occurring more than once, which is stepwise effective for some state S is said
to be concise (for S). A message m = τ1 · · · τn is vacuous if its set of indices
{1, . . . , n} can be partitioned into pairs {i, j}, such that τi and τj are mutual
reverses. The reverse of a message m = τ1 · · · τn is defined by m̃ = τ̃n · · · τ̃1.

For convenience, we may sometimes say that “m is the empty message”
to mean that m = τ0, the identity on S (even though the identity is not a
token). In all such cases, m is a place holder symbol that can be deleted, as
in: ‘let mn be a message in which m is either a concise message or is empty
(that is mn = n)’.

10.1.4 Axioms for media. A token system (S,T) is called a medium (on S)
if the following two axioms are satisfied.

[Ma] For any two distinct states S, V in S, there is a concise message pro-
ducing V from S.

[Mb] Any return message is vacuous.

A medium (S,T) is finite if S is a finite set. We leave to the reader to show
that these two axioms are independent (Problem 4).

Except when stated otherwise, all statements from now on concern a
medium (S,T). Thus, Axioms [Ma] and [Mb] are implicitly assumed to hold.
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10.2 Some Basic Lemmas

We omit the proofs of some straightforward facts, such as those gathered in
the next lemma (see Problem 5).

10.2.1 Lemma. (i) Each token has a unique reverse.
(ii) If a message m is stepwise effective for S, then Sm = V implies

V m̃ = S.
(iii) τ ∈ C(m) if and only if τ̃ ∈ C(m̃).
(iv) If m is consistent, so is m̃.

10.2.2 Lemma. Suppose that Tn = Vm, with m and n consistent, step-
wise effective messages for the states T and V , respectively, and with T not
necessarily distinct from V . Then, n and m are jointly consistent.

Proof. If T 6= V , we know from Axiom [Ma] that there is a concise message
w producing T from V . Thus nm̃w is a return for T , which must be vacuous
by [Mb]. If nm is not consistent, there is some token τ ∈ C(n)∩C(m̃). But as
nm̃w is vacuous and each of n and m is consistent, the token τ̃ must appear
at least twice in w, contradicting the conciseness of w.

If T = V , the message nm̃ is a return for T which, by [Mb], must be
vacuous. Suppose that nm is inconsistent. There is then some token τ that
occurs in n and in m̃. Since nm̃ is vacuous, the token τ̃ must occur in nm̃.
This is impossible since n and m̃ are consistent.

10.2.3 Lemma. (i) No token is identical to its own reverse.
(ii) Any consistent message which is stepwise effective for some state is

concise.
(iii) For any two adjacent states S and V , there is exactly one token pro-

ducing V from S.
(iv) Let m be a message that is concise for some state, then

`(m) = |C(m)| , (10.2)

and

C(m) ∩ C(m̃) = ∅. (10.3)

(v) No token τ can be a bijection. Moreover, if Sτ = V with S, V two
distinct states, then V τ = V .

(vi) Suppose that m and n are stepwise effective for S and V , respectively,
with Sm = V and V n = W . Then mn is stepwise effective for S,
with Smn = W .

(vii) Any vacuous message which is stepwise effective for some state is a
return message for that state3.

3 Statement (vii) is thus a partial converse of Axiom [Mb].
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The proofs of (i), (iii), (iv) and (vi) are short and left as Problem 6.

Proof. (ii) Suppose that m is a consistent, stepwise effective message pro-
ducing V from S, and that some token τ occurs at least twice in m. We
thus have Sm = n1τn2τn3 = V for some consistent stepwise effective mes-
sages n1τ and n2τn3. One or more of n1, n2 and n3 may of course be
empty. On the other hand, τ may occur more than twice in m. Without loss
of generality, we may suppose that τ occurs exactly twice in n1τn2τ . We
thus have Sn1τn2τ = V ′, for some state V ′. We conclude that the messages
n1τ and τ̃ ñ2 are consistent, stepwise effective messages producing the state
W = Sn1τ = V ′τ̃ ñ2 from S and V ′, respectively. These two messages are not
jointly consistent, contradicting Lemma 10.2.2.

(v) Suppose that Sτ = V for some token τ and two distinct states S and V .
If V τ = W 6= V for some state W , then V = Sτ = Wτ̃ , a contradiction
of Lemma 10.2.2, because, by definition, τ is a consistent message. Hence,
Sτ = V τ = V , and so τ is not a bijection.

(vii) Let m be a vacuous message which is stepwise effective for some
state S, with Sm = V . If S 6= V , then Axiom [Ma] implies that there is a
concise message n producing S from V . Thus, mn is a return for S, which
must be vacuous by [Mb]. Since m is vacuous, n must be vacuous. This cannot
be true because n is concise.

In the next section, we describe the states of a medium in terms of the
consistent messages producing them. This is the first step toward representing
the states of a medium by the sets forming some well-graded family.

10.3 The Content of a State

10.3.1 Definition. For any state S in a medium (S,T), we define the (token)

content of S as the set Ŝ of all the tokens contained in at least one concise
message producing S. Formally, we thus have

Ŝ =
⋃
{C(m) m is a concise message producing S}.

We refer to the family Ŝ of all the contents of the states in S as the content
family of the medium (S,T).

10.3.2 Example. In the medium formed by the collection of the 4! linear
orders on the set {1, 2, 3, 4} which is represented by its permutohedron in
Figure 10.1, the content of the state 2134 is the set of transformations

2̂134 = {τ21, τ23, τ24, τ13, τ14, τ34},

in which each token corresponds to one of the ordered pairs contained in the
linear order 2 < 1 < 3 < 4. The content of the state 2143, which is adjacent
to 2134 in the graph of Figure 10.1, is almost the same, namely
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2̂143 = {τ21, τ23, τ24, τ13, τ14, τ43},

that is, the token τ34 of 2̂134 has been substituted by its reverse τ43. For these
two adjacent states, we thus have

d(2̂134, 2̂143) = 2

where d stands as usual for the symmetric difference distance between sets

(cf. 1.6.12). Notice also that |2̂134| = 6, which is half of the total number of
tokens in this example (that is, 12 = 4 · 3).

We omit the proof of the next theorem, which generalizes these observations
(see Problem 7).

10.3.3 Theorem. For any state S and any token τ , we have either τ ∈ Ŝ or
τ̃ ∈ Ŝ (but not both). This implies that |Ŝ| = |V̂ | for any two states S and V .
Moreover, if the states S and T are adjacent, then d(Ŝ, T̂ ) = 2. Finally, if the

set of states S is finite, then |Ŝ| = |T|/2 for any S ∈ S.

The following result is in the same vein but considers states which are not
necessarily adjacent.

10.3.4 Theorem. If Sm = V for some nonempty, concise message m (thus

S 6= V ), then V̂ \ Ŝ = C(m), and so V̂ 4 Ŝ = C(m) + C(m̃) 6= ∅.

Proof. Since V̂ contains all the tokens from concise messages producing V ,
we necessarily have C(m) ⊆ V̂ . As we also have V m̃ = S, the same argument

yields C(m̃) ⊆ Ŝ. By Theorem 10.3.3, Ŝ cannot contain both a token and its

reverse; so C(m) ⊆ V̂ \ Ŝ.

Turning to the converse inclusion, suppose that τ ∈ V̂ \ Ŝ for some to-
ken τ . Thus, τ occurs in some concise message producing V . Without loss of
generality, we may assume that Wτn = V for some state W , with τn concise.
Suppose that W 6= S and let q be a concise message producing S from W . As
the message mñτ̃q is a return for S, it must be vacuous by [Mb]. Thus, we
must have

τ ∈ C(m) ∪ C(ñ) ∪ C(q).

We cannot have either τ ∈ C(q) (because this would imply τ ∈ Ŝ), or τ ∈ C(ñ)
(because this would yield τ, τ̃ ∈ C(τn), with τn concise, a contradiction).
We conclude that τ ∈ C(m), and so V̂ \ Ŝ ⊆ C(m). The case W = S is
straightforward.

The last equation of the theorem results from (10.3) in Lemma 10.2.3(iv).

It is now easily shown that, in a medium, the content of a state defines
that state (Problem 9).
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10.3.5 Theorem. For any two states S and V , we have

S = V ⇐⇒ Ŝ = V̂ . (10.4)

The statement of the last result of this section requires a definition.

10.3.6 Definition. A family of sets F is 2-graded if, for any two distinct sets
S and V in F, there is a positive integer n and a sequence

S0 = S, S1, . . . , Sn = V

of sets in F such that, for 1 ≤ i ≤ n, we have d(Ŝi−1, Ŝi) = 2, and moreover
d(Ŝ, V̂ ) = 2n.

10.3.7 Theorem. The content family of a medium is 2-graded.

Proof. For any two distinct states S and V in a medium, there exists by [Ma]
a concise message m = τ1τ2 · · · τn producing V from S. We write S0 = S and
Si = Si−1τi for 1 ≤ i ≤ n. Note that Si−1 6= Si because m is stepwise effective.
Thus, Si−1 and Si are adjacent and so, by Theorem 10.3.3, d(Ŝi−1, Ŝi) = 2
for 1 ≤ i ≤ n. The fact that d(Ŝ, V̂ ) = 2n is an immediate consequence of the

property Ŝ 4 V̂ = C(m) + C(m̃) 6= ∅ of Theorem 10.3.4.

The main goal of this chapter is the representation of a learning space by a
particular kind of medium, with the states of the learning space corresponding
to those of the medium. As a learning space is well-graded, Theorem 10.3.7
suggests a possible device. The tokens of a medium come in pairs of mutual
reverses. So, we could arbitrarily choose one token in each pair to represent
the addition of an item to a state (of the learning space to be constructed),
and its reverse to the opposite operation.

With this idea in mind, we reconsider our introductory Example 10.1.1
(a), which dealt with the medium of all the partial orders on a finite set.

10.3.8 Example. Let P3 be the collection of the partial orders on {a, b, c},
including the partial order ι consisting only of loops. We take P3 to be the set
of states of a token system, with the transformations consisting in adding/re-
moving an ordered pair of distinct elements in {a, b, c, d} to/from the partial
orders in P3 (whenever possible, that is, whenever producing a partial order).
We thus have for any partial order P ∈ P3 and any distinct x, y ∈ {a, b, c},

Pτxy =

{
P ∪ {xy} if xy /∈ P and P ∪ {xy} ∈ P3,

P otherwise;
(10.5)

P τ̃xy =

{
P \ {xy} if xy ∈ P and P \ {xy} ∈ P3,

P otherwise.
(10.6)
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We write T3 for the set of all such transformations on P3. The pair (P3,T3)
is a medium (cf. Problem 10). Our goal is to examine the contents of the
states in P3. The digraph of this medium is drawn in Figure 10.3, with the
centrifugal arcs pictured by the red arrows. They represent the addition of
a pair to a partial order. The transformations corresponding to each arc are
indicated, also in red.
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Figure 10.3. Digraph of the medium of all
the partial orders on the set {a, b, c}. Only the
centrifugal arcs are indicated. Each represents
the addition of a pair to a partial order.

For the purpose of this example, anticipating on definitions to come, let us
call such transformations ‘positive’. In the same vein, the ‘positive content’ of
a state is the subset of positive transformations in the content of that state.

Figure 10.4 displays a digraph having as nodes the contents of the states
(with positive content easily identifiable), and arcs derived in a natural way
from the positive tokens. This digraph is isomorphic to the digraph of Fig-
ure 10.3.
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{τab,τ̃ba,τac,τ̃ca,τbc,τ̃cb} {τab,τ̃ba,τac,τ̃ca,τ̃bc,τcb}{τ̃ab,τba,τac,τ̃ca,τbc,τ̃cb}

{τab,τ̃ba,τ̃ac,τca,τ̃bc,τcb}{τ̃ab,τba,τ̃ac,τca,τ̃bc,τcb}{τ̃ab,τba,τ̃ac,τca,τbc,τ̃cb}

{τ̃ab,τ̃ba,τac,τ̃ca,τ̃bc,τ̃cb}

{τ̃ab,τ̃ba,τ̃ac,τ̃ca,τ̃bc,τ̃cb}{τ̃ab,τba,τ̃ac,τ̃ca,τbc,τ̃cb} {τab,τ̃ba,τ̃ac,τ̃ca,τ̃bc,τcb}

{τ̃ab,τba,τ̃ac,τ̃ca,τ̃bc,τ̃cb} {τ̃ab,τ̃ba,τ̃ac,τ̃ca,τ̃bc,τcb}

{τab,τ̃ba,τ̃ac,τ̃ca,τ̃bc,τ̃cb}{τ̃ab,τ̃ba,τ̃ac,τ̃ca,τbc,τ̃cb}

{τ̃ab,τ̃ba,τac,τ̃ca,τbc,τ̃cb}

{τ̃ab,τba,τ̃ac,τca,τ̃bc,τ̃cb} {τ̃ab,τ̃ba,τ̃ac,τca,τ̃bc,τcb}

{τab,τ̃ba,τac,τ̃ca,τ̃bc,τ̃cb}

{τ̃ab,τ̃ba,τ̃ac,τca,τ̃bc,τ̃cb}

τba τab τbc τcb

τbc τcb τba τab

τba τbc τab τcb

τbc τba τcb τab

τca τca τca τca

τac τac τac τac
τbc τab

τba τcb

τca

τac

6 6

??

��	

6

��� ���@@I @@I

@
@R

@
@R

��	 ��	

? ?

6

6

��	

��	

@@I ���

@@I

@@I

���

���

@@R

@@R

@@R

?

Figure 10.4. Digraph of state contents for the medium of all the partial orders on
the set {a, b, c}. This digraph is isomorphic to that of Figure 10.3. Here, the vertices
are marked by the contents of the states. A token printed in red correspond to the
addition of a pair to a partial order (thus, a positive transformation). The linear
orders are represented in the top and the bottom rows.

The collection of the positive contents of states in this example is easily
seen to be well-graded, considering: (i) the wellgradednes of the family P3;
and (ii) the isomorphism between the digraphs represented in Figures 10.3
and 10.4. It also contains the empty set, because the positive content of the
partial order ι is empty. However, this collection does not contain the union
of all the positive contents, that is, the state {τab, τba, τac, τca, τbc, τcb}. Thus,
it is not closed under union and so is not a learning space.

This example prompts the following observation. The set of tokens of cer-
tain media can be partitioned into two classes, respectively called ‘positive’
and ‘negative’, in such a way that a token is positive if and only if its reverse is
negative. Thus, the two classes are of equal size. The next section presents the
relevant theory, starting with the construction of an ‘oriented’ medium for any
discriminative, well-graded family. By the end of the section, a stronger result
establishes a natural correspondence between the collection of discriminative,
well-graded families and the collection of ‘oriented’ media (Theorem 10.4.11).
Section 10.5 will then derive similar results for learning spaces and a specific
subclass of the ‘oriented’ media.
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10.4 Oriented Media

The medium constructed from a family of partial orders in Example 10.3.8
was endowed with a natural ‘orientation’ dictated by the nature of the tokens.
There are many such examples of media arising from well-graded families of
relations4. We have two results generalizing these examples. The first one
below essentially says that a medium can be built from any discriminative
well-graded family. The second one (Theorem 10.4.3) states that the resulting
medium is ‘oriented’, in the sense of the next Definition 10.4.2.

Notice that a well-graded family K is discriminative if and only if |∩K| ≤ 1
(see Problem 4 in Chapter 4).

10.4.1 Theorem. Let K be a discriminative and well-graded family of sets,
with |K| ≥ 2. Set X = ∪K\∩K, S = K and let T consist of all transformations
τq and τq̄ of S, for all q ∈ X, where, for all K ∈ S:

Kτq =

{
K ∪ {q} if q /∈ K and K ∪ {q} ∈ K,

K otherwise,
(10.7)

Kτq̄ =

{
K \ {q} if q ∈ K and K \ {q} ∈ K,

K otherwise.
(10.8)

Then (S,T) is a medium in which τq and τq̄ are mutual reverses; so, τq̄ = τ̃q.

Proof. By definition, all τq and τq̄ are transformations on S. We prove that
none of them is the identity. Take any q in X. There thus exist sets K and
L in K such that q ∈ K and q /∈ L. By assumption, there is a tight path
K = K0, K1, . . . , Kh = L. Let i be the smallest index such that q /∈ Ki. Then
Kiτq = Ki−1 and Ki−1τq̄ = Ki. Thus (S,T) is a token system. Let us now
show that (S,T) satisfies the axioms for a medium (Definition 10.1.4). If K,
L are distinct states in S, there is by our assumption a tight path K = K0,
K1, . . . , Kh = L. If Ki∆Ki−1 = {q}, we have Kiτq = Ki−1 or Kiτq̄ = Ki−1

(according to q /∈ Ki or q ∈ Ki). Consequently, there is a concise message
from K to L, and Axiom [Ma] thus holds. To prove Axiom [Mb], notice that
any return message to some state K must add and delete the same number
of times a given element of X.

The next definition specifies the concept of an orientation for media in
general.

10.4.2 Definition. An orientation of a medium M = (S,T) is a partition of
its set of tokens T into two classes T+ and T− respectively called positive and
negative such that, for any τ ∈ T, we have

τ ∈ T+ ⇐⇒ τ̃ ∈ T− .

4 Some of them are dealt with in Problems 11, 12 and 13.
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The medium M is said to be oriented by the partition {T+,T−}. The tokens
belonging to the class T+ (resp. T−) are then called positive (resp. negative).

An oriented medium M = (S,T) will be implicitly taken to have its orien-
tation denoted by {T+,T−}. The positive (resp. negative) content of a state

S is the set Ŝ+ = Ŝ ∩ T+ (resp. Ŝ− = Ŝ ∩ T−) of the positive (resp. negative)

tokens in Ŝ. The two families

Ŝ+ = {Ŝ+ S ∈ S} and Ŝ− = {Ŝ− S ∈ S}. (10.9)

are called the positive content family and negative content family of M, re-
spectively. A message containing only positive (resp. negative) tokens is called
positive (resp. negative).

Note that any medium can be oriented, and that a finite medium (S,T)
can be given 2|T|/2 different orientations (Problem 15).

We now show that the medium built from any discriminative well-graded
family in Theorem 10.4.1 is endowed with a natural orientation. We keep the
notation of that theorem.

10.4.3 Theorem. Let K be a discriminative and well-graded family of sets,
with |K| ≥ 2. The medium (S,T) constructed in Theorem 10.4.1 is oriented
by the following partition:

T+ = {τq ∈ T q ∈ X}, T− = {τ̃q ∈ T q ∈ X}. (10.10)

Proof. That {T+,T−} is a partition of T is clear, as well as the other re-
quirements in Definition 10.4.2.

We now turn to the converse construction which involves the manufac-
ture of a well-graded family from an oriented medium. As a consequence of
Theorems 10.3.3 and 10.3.5, we have:

10.4.4 Theorem. The following equivalence holds for any two states S and
V of an oriented medium (S,T):

S = V ⇐⇒ Ŝ+ = V̂ +.

By symmetry, a similar equivalence also holds for the negative contents.

Proof. The necessity is immediate. For the sufficiency, suppose that both
Ŝ+ = V̂ + and Ŝ− = V̂ − hold. Thus, we must have

Ŝ = Ŝ+ + Ŝ− = V̂ + + V̂ − = V̂ ,

and so S = V by Theorem 10.3.5. It suffices to prove that Ŝ+ = V̂ + implies
Ŝ− = V̂ −. Suppose that Ŝ+ = V̂ +. We have successively, for any τ ∈ T,

τ ∈ Ŝ− ⇐⇒ τ̃ ∈ T+ \ Ŝ+ (by Theorem 10.3.3)

⇐⇒ τ̃ ∈ T+ \ V̂ + (because Ŝ+ = V̂ +)

⇐⇒ τ ∈ V̂ − (by Theorem 10.3.3). �
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10.4.5 Theorem. If S and V are two distinct states in an oriented medium,
with Sm = V for some positive concise message m, then V̂ + = Ŝ+ + C(m).

The proof is left as Problem 16. In some situations, a natural orientation
is dictated by the the specific structure of a medium.

One organizing principle for such an orientation is described in the next
definition.

10.4.6 Definition. A state R in an oriented medium is a root if any concise
message producing any other state S from R is positive. An oriented medium
having a root is said to be rooted. By abuse of language, we may say that the
orientation of a medium is rooted (at the state R) if the medium is rooted for
that orientation and R is the root.

10.4.7 Theorem. In an oriented medium, a state R is a root if and only if
R̂+ = ∅. An oriented medium has at most one root and does not necessarily
have one.

Proof. (Sufficiency.) Let R be a state with an empty positive content, that is

R̂+ = ∅. Suppose that m is a concise message such that Rm = S; this implies
Sm̃ = R. By Theorem 10.3.4, we have R̂ \ Ŝ = C(m̃). So, if m̃ contains a

positive token, then R̂+ 6= ∅. Thus, m̃ is negative, and m is positive. Because
this holds for any message m effective for R, the state R must be a root.

(Necessity.) If R is a root, then by Theorem 10.4.5 and the definition of a

root, we have R̂+ ⊂ Ŝ+ for any state S 6= R. Suppose that R̂+ contains some
positive token τ . Then τ belongs to the contents of all the states. This implies
that τ̃ is not effective for any state; so, τ̃ is the identity function τ0, which is
not a token by Definition 10.1.2. We conclude that R̂+ must be empty.

Since by Theorem 10.3.5 a state is defined by its content, an oriented
medium can have at most one root. We leave it to the reader to construct an
oriented medium without a root (Problem 17).

The two results in the next theorem are straightforward. We omit the short
proofs. (Problem 18).

10.4.8 Theorem. The following two statements are true for any medium.

(i) Any state R can be made a root by defining a suitable orientation.

(ii) There exists an orientation ensuring that the positive contents of all
the states are finite sets. In particular, the states of any rooted medium
have finite positive contents.

10.4.9 Theorem. The family Ŝ+ of all positive contents in an oriented
medium (S,T) is well-graded and satisfies both ∪Ŝ+ = T+ and ∩Ŝ+ = ∅.

Thus, Ŝ+ is also discriminative.
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Proof. Take any two distinct Ŝ+, V̂ + ∈ S+. From Theorem 10.3.7, we know
that the content family of (S,T) is 2-graded. As in the proof of the latter
theorem, if τ1 . . . τn is a concise message producing V from S, with

S = S0, S0τ1 = S1, S1τ2 = S2, . . . , Sn−1τn = Sn = V, (10.11)

then

Ŝi \ Ŝi−1 = {τi} and Ŝi−1 \ Ŝi = {τ̃i} for 1 ≤ i ≤ n. (10.12)

Moreover, we must have d(Ŝ, V̂ ) = 2n. The sequence (10.11) induces the

corresponding sequence Ŝ+ = Ŝ+
0 , Ŝ

+
1 , . . . , Ŝ

+
n = V̂ +. By Theorem 10.3.3,

exactly one of the τi and τ̃i in (10.12) is positive. We thus have

either Ŝ+
i \ Ŝ+

i−1 = {τi} ⊆ T+ or Ŝ+
i−1 \ Ŝ+

i = {τ̃i} ⊆ T+,

and so d(Ŝ+
i , Ŝ

+
i+1) = 1, for 1 ≤ i ≤ n, with d(Ŝ+, V̂ +) = d(Ŝ, V̂ )/2 = n.

Hence S+ is well-graded.
For any τ+ ∈ T+, there are distinct S and T in S such that Sτ+ = T ; so

τ+ ∈ T̂ , yielding ∪Ŝ+ = T+. The fact that the family Ŝ+ satisfies ∩Ŝ+ = ∅
results easily from the definition of the positive content of a state. Finally, we
leave to the reader to establish that Ŝ+ is discriminative (see Problem 19).

We turn to one of the two main results of this chapter. It formalizes
how discriminative well-graded families and oriented media are cryptomor-
phic structures. The statement of this result relies on some simple concepts
introduced in the next definition5.

10.4.10 Definition. Two families of sets, K and L, are isomorphic, which is
denoted by K ∼ L, if there exists a bijective mapping

a : (∪K) \ (∩K)→ (∪L) \ (∩L)

satisfying

a({K \ ∩K K ∈ K}) = {L \ ∩L L ∈ L}.

Two token systems (S,T) and (U,V) are isomorphic, which we denoted by
(S,T) ∼ (U,V), if there exist two bijective mappings

b : S→ U and c : T → V

such that for all S, T in S and τ in T

b(S)c(τ) = b(T ) ⇐⇒ Sτ = T.

Finally, two oriented mediums (S,T) and (U,V) are sign-isomorphic, which
we also denote by (S,T) ∼ (U,V), if there exist two bijective mappings

5 These concepts are not used elsewhere in this book.
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b : S→ U and c : T → V

such that for all S, T in S and τ in T

b(S)c(τ) = b(T ) ⇐⇒ Sτ = T and c(T+) = V+. (10.13)

10.4.11 Theorem. For any discriminative, well-graded family K of sets, de-
note by s(K) the oriented medium constructed in Theorems 10.4.1 and 10.4.3.
For any oriented medium (S,T), denote by f(S,T) the discriminative, well-
graded family formed by all its positive contents (cf. Theorem 10.4.9). We
then have

K ∼ (f ◦ s)(K) and S ∼ (s ◦ f)(S). (10.14)

Proof. Given K, select some q ∈ ∪K \ ∩K and some K ∈ K. Note that
K stands for both an element of K and an element of s(K), since these two

sets are equal. We have q ∈ K if and only if τq ∈ K̂+. With (S,T) = s(K),
the positive tokens of the oriented medium (S,T) are of the form τq, for q in

∪K \ ∩K. Also, f(S,T) is the family Ŝ+ of all positive contents of (S,T), and

any positive token τ is an element of ∪Ŝ+; moreover, we have ∩Ŝ+ = ∅ by
Theorem 10.4.9. The first isomorphism formula in (10.14) derives from the
mapping

(∪K) \ (∩K)→ Ŝ+ : q 7→ τq.

Let (S,T) be an oriented medium, and let (S′,T′) denote (s ◦ f)(S,T). An
element K of the set family K = f(S,T) is exactly the positive content of
some state of the medium (S,T). Each state in the medium s(K) = (S′,T′)

is an element of K, so is a positive content Ŝ+ of some state S in the given
medium (S,T). By Theorem 10.4.9, S is fully determined by Ŝ+. We may thus
set b(S) = K, which gives a bijective mapping b : S → S′. Now, what about
the tokens of (S′,T′)? According to Equations (10.7) and (10.8), a token τ of
s(K) = (S′,T′) is either of the form τq or τq̄ = τ̃q, where q ∈ (∪K) \ (∩K).

Theorem 10.4.9 gives us here ∪K = ∪Ŝ+ = T+ and ∩K = ∩Ŝ+ = ∅. Then,
any q ∈ ∪K = T+ equals some positive token τ(q) of the given medium (S,T),
and conversely. This yields the bijective mapping c : T → T′ sending τ(q) to

τq, and τ̃(q) to τq̄. We leave to the reader to verify that the mappings b and
c just constructed satisfy Equation (10.13).

10.4.12 Remarks. a) The mappings s and f introduced in Theorem 10.4.11
make explicit the cryptomorphism between discriminative, well-graded fami-
lies of sets on the one hand, and oriented media on the other hand.

b) In Theorem 10.4.11, we need oriented media rather than just media
for the following reason. Let (S,T) be an oriented medium, and denote by
K = f(S,T) the corresponding well-graded family with empty intersection
(with f as in Theorem 10.4.11). Suppose we change the orientation of (S,T)
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by moving all tokens in some subset Y of T+ to T−, and necessarily all tokens
τ̃ with τ ∈ Y to T+. The effect on K is as follows, with Y = Y this time a
subset of ∪K: any set K in K gets replaced with the set K 4 Y . Thus, for
any element q in Y and any K in K, membership of q to K is exchanged
with non-membership. Say that K and the resulting family of sets are linked
(whatever the subset Y of ∪K is). Hence, a (non oriented) medium (S,T)
corresponds to a whole class of set families, which are two by two linked.

By combining previous theorems, we derive the converse of Theorem 10.4.1
and so establish the close connection between the notion of a medium and that
of a well-graded family of sets. Notice the word “finite” in the statement.

10.4.13 Theorem. Any medium is isomorphic to the medium constructed as
in Theorem 10.4.1 from some discriminative, well-graded family of finite sets
which contains the empty set.

Proof. By Theorem 10.4.8, any medium (S,T) admits an orientation with a
root. For such an orientation, all the positive contents are finite and moreover
the positive content of the root is empty. Remember from Theorem 10.4.9
that the family K of all the positive contents is a discriminative, well-graded
family. Now, Theorem 10.4.11 ensures that the resulting oriented medium
(S,T) is sign-isomorphic to the oriented medium constructed from the family
K. This concludes the proof: the given medium (S,T) is then isomorphic to
the medium constructed from the discriminative, well-graded family K with
∅ ∈ K.

10.5 Learning Spaces and Closed, Rooted Media

Learning spaces are, in particular, discriminative and well-graded families. In
view of Theorem 10.4.11, they are thus set in a one-to-one correspondence
with certain oriented media. We will characterize the latter by two additional
properties, namely being ‘closed’ and having a ‘root’ (see Theorem 10.5.13).

10.5.1 Definition. An oriented medium (S,T) is closed if for any state S and
any two distinct positive6 tokens τ , τ ′ both effective for S, we have

(Sτ = V, Sτ ′ = W ) =⇒ V τ ′ = Wτ. (10.15)

Clearly, a medium can be closed under one orientation without being closed
under some other orientation.

6 Obviously, a corresponding concept of closure for negative tokens can be defined
similarly.
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10.5.2 Theorem. In an oriented medium (S,T), the two conditions below
are equivalent:

(i) (S,T) is closed.

(ii) Let m = τ1 . . . τn be any positive concise message from some state S,
with S0 = S, and Si = Si−1τi for 1 ≤ i ≤ n. If a positive token
τ /∈ C(m) is effective for some state Si, 0 ≤ i < n, it is also effective
for any state Sj , i < j ≤ n.

We leave the short proof of this theorem as Problem 22. Condition (ii)
of this theorem is conceptually germane to Axiom [L2] of a learning space
and is a pointer to Theorem 10.5.12, the second main result of this chapter.
This theorem states that the family Ŝ+ of positive contents of a finite, closed,
rooted medium (S,T) is a learning space on the set T+ of positive tokens. We

already know by Theorem 10.4.9 that such a family Ŝ+ is well-graded, with
T+ = ∪Ŝ+. It remains to show that it contains the empty set and that it is
closed under union. The next lemma is our first step.

10.5.3 Lemma. Let n = mτ1τ2p be a concise message from some state S in
a closed medium, with τ1 negative, τ2 positive, and both m and p possibly
empty. Then Smτ1τ2p = Smτ2τ1p.

In other words, two adjacent tokens in a concise message, with the first
one negative and the second one positive, can be transposed without changing
the state produced.

Proof. Let n be as in the theorem and suppose that T = Smτ1. Then,
there must be two distinct states W and W ′ such that T τ̃1 = W = Sm and
Tτ2 = W ′. Since both τ̃1 and τ2 are positive and the medium is closed, we get
Wτ2 = W ′τ̃1, and thus also, successively

Smτ2τ1 = Wτ2τ1 = W ′τ̃1τ1 = W ′ = Tτ2 = Smτ1τ2.

10.5.4 Definition. Suppose that n = mpm′, with m and m′ two possibly
ineffective messages, and p an effective one. Then p is a segment of n. If m
is empty, then (as m can be omitted) p is an initial segment or prefix of n.
Similarly, if m′ is empty, then p is a terminal segment or suffix of n. With
respect to some orientation, a segment is said to be positive (resp. negative)
if it contains only positive (resp. negative) tokens.

10.5.5 Definition. In an oriented medium, a concise message m producing
a state V from a state S is called canonical if it satisfies one of the following
three cases:

(i) m is positive;
(ii) m is negative;

(iii) m = nn′ with n a positive prefix and n′ a negative suffix.

In Case (iii) the canonical message m = nn′ is said to be mixed.
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10.5.6 Theorem. For any two distinct states S and V in a closed medium,
there is a canonical message producing V from S.

Proof. We know from Axiom [Ma] that Sp = V for some concise message
p = τ1 . . . τn. Suppose that p is not canonical. Then there must be an index
i such that τi is negative and τi+1 positive. By Lemma 10.5.3, the tokens τi
and τi+1 can be transposed without changing the state produced. The result
follows by induction.

10.5.7 Lemma. Suppose that a state V in an oriented medium is produced
from a state S by a mixed canonical message m = nn′, with Sn = T ,
n a positive prefix of m, and n′ a negative prefix of m. We then have
Ŝ+ ∪ V̂ + = T̂+.

Proof. Theorem 10.4.5 implies that Ŝ+ ⊂ T̂+. We have also V̂ + ⊂ T̂+ since
ñ′ is a positive message which is concise for V and produces T from V . This
yields Ŝ+ ∪ V̂ + ⊆ T̂+. We get

T̂+ \ (Ŝ+ ∪ V̂ +) = (T̂+ \ Ŝ+) ∩ (T̂+ \ V̂ +) = C(n) ∩ C(ñ′) = ∅,

the second equation holding in view of Theorem 10.4.5, and the last one
because nn′ is concise for S. Thus, T̂+ ⊆ Ŝ+ ∪ V̂ +, yielding the result.

10.5.8 Theorem. For any two states S and V in a closed medium (S,T),
there is a unique state T whose positive content is the union of the positive
contents of S and V . So, the family Ŝ+ of all the positive contents is closed
under finite unions, and the family Ŝ− of all the negative contents is closed
under finite intersections.

Proof. By Theorem 10.5.6, there is a canonical message p producing V
from S. Suppose that p is positive, then clearly Ŝ+ ⊂ V̂ +, and so Ŝ+ ∪ V̂ + =
V̂ + ∈ T̂+, yielding T = V . If p is negative, then p̃ is positive and produces S
from V , with a similar result. The case where p is a mixed canonical message
is an immediate consequence of Lemma 10.5.7. The set T is unique because
any state is defined by its positive content (Theorem 10.4.4). The statement
concerning the negative contents follows by duality.

The next theorem and definition complete our preparation.

10.5.9 Theorem. Any finite closed medium (S,T) has a unique state Λ which
is produced only by positive messages. Accordingly, the content of Λ is con-

founded with its positive content. We thus have Λ̂ = Λ̂+ = T̂+.

Proof. By finiteness and Theorem 10.5.8, the union of all the positive con-
tents is the positive content of some state, which we denote by Λ. Theo-

rem 10.4.9 implies Λ̂+ = T̂+; so, by Theorem 10.3.3, we get Λ̂ = Λ̂+. Finally,

any state S with Ŝ = Ŝ+ must be equal to Λ, because then Ŝ = Ŝ+ = T̂+,
and so Ŝ = Λ̂ from which follows S = Λ (Theorem 10.3.5).
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10.5.10 Remarks. a) Without the finiteness assumption, Theorem 10.5.9 no
longer holds. As a counterexample, take the family of all finite subsets of R,
including the empty set. As this family is well-graded and discriminative,
Theorem 10.4.3 can be used to built an oriented medium. This medium has
no state produced only by positive messages. Note that this infinite oriented
medium has a root.

b) The converse of Theorem 10.5.9 does not hold. An infinite medium
with a state produced only by positive messages is obtained by exchanging
the positive and the negative tokens in the counter-example specified in (a)
(Λ is the empty set). This infinite oriented medium has no root.

10.5.11 Definition. A state S in an oriented medium M = (S,T) is called

the apex of M if Ŝ = T+.
Thus, the state Λ introduced in Theorem 10.5.9 is the apex of the finite

closed medium. By Theorem 10.3.5, any oriented medium can have at most
one apex. The infinite, closed medium of Remark 10.5.10 (a) has no apex.

10.5.12 Theorem. The two following propositions are equivalent for an ori-
ented medium M = (S,T):

(i) M is a finite, closed and rooted medium.

(ii) The positive content family Ŝ+ of M is a learning space.

Proof. (i) ⇒ (ii). We have to prove that both T+ and ∅ are in Ŝ+, and that
Axioms [L1] and [L2] of a learning space are satisfied. By Theorem 10.5.9,

the apex Λ of the medium M satisfies Λ̂ = T+ ∈ Ŝ+. Since M is rooted,
∅ ∈ Ŝ+ results from Theorem 10.4.7. From Theorems 10.4.9 and 10.5.8, we
know that Ŝ+ is a wg-family that is ∪-closed. Accordingly, by Theorem 2.2.4,
the collection Ŝ+ of positive contents must be a learning space.

(ii) ⇒ (i). By Theorem 10.4.4, any state in an oriented medium is defined
by its positive content. Observe that if the positive tokens τ and µ are effective
for some state S of M, then

(̂Sτ)
+

= Ŝ+ + {τ} and (̂Sµ)
+

= Ŝ+ + {µ}.

Because Ŝ+ is ∪-closed, the set V̂ + = Ŝ+ + {τ}+ {µ} is the positive content
of some state V , with necessarily V = Sτµ = Sµτ . So, M is closed. We have
∅ ∈ Ŝ+ by definition of a learning space as a particular kind of knowledge
structure. Thus ∅ is the positive content of some state R that is a root of M,
by Theorem 10.4.7.

We close the chapter with a theorem essentially stating that learning spaces
are cryptomorphic to finite, closed and rooted media. The functions s and f
are defined as in Theorem 10.4.11.
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10.5.13 Theorem. Suppose that K is a discriminative, well-graded family of
sets and let (S,T) be the corresponding oriented medium, that is s(K) = (S,T)
and f(S,T) = K. Then K is a learning space if and only if (S,T) is a finite,
closed and rooted medium.

The proof is left as Problem 23.

10.6 Original Sources and Related Works

The concept of a medium in the sense of this chapter originated with a paper
of Falmagne (1997), whose motivation combined two quite different endeavors.
One was the search for an algebraic generalization of the property of wellgrad-
edness of some families of relations, such as the family of all partial orders
on a finite set or the family of all finite subsets of R. The other was quite
different. It was empirical and prompted by the wish to model the behavior
of a potential voter in an election. The tokens in such a model represent the
many types of informations received by the voter in the course of time, each
of which may be tiny, unobservable, and yet potentially capable of altering
the voters opinions on the competing candidates in a minute way. The term
‘medium’ originated from that example.

David Eppstein and Sergei Ovchinnikov soon expressed interest in the
topic, and the first paper was followed by several others (see in particular
Ovchinnikov and Dukhovny, 2000; Eppstein and Falmagne, 2002; Falmagne
and Ovchinnikov, 2002; Eppstein, 2005, 2007; Falmagne and Ovchinnikov,
2009).

The mathematical concept of a medium closely relates to (at least) two
other ones. First, as noted by Ovchinnikov and Dukhovny (2000), the connec-
tion between well-graded families and media is mutual. Second, finite media
are also cryptomorphically equivalent to ‘partial cubes’ (where a ‘partial cube’
is an ‘isometric’ subgraph of a hypercube graph; we refer the reader to Im-
rich and Klavžar, 2000, for the terminology, and a thorough exposition of the
subject). Media are the topic of a recent book by Eppstein, Falmagne, and
Ovchinnikov (2008).

Problems

1. Find other examples of media in combinatorics or in real life. (Think of
games, for example.)

2. Verify that the collection L of all the linear orders on a finite set can be
cast as a medium. Which axiom may be violated if L is infinite?

3. Verify that any token in a token system has at most one reverse, and that
if the reverse τ̃ of some token τ exists, then ˜̃τ = τ . Construct an example
in which some token in a token system has no reverse.
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4. Manufacture two examples establishing the independence of Axioms [Ma]
and [Mb].

5. (Lemma 10.2.1.) Prove that, in a medium: (i) each token has a unique
reverse; (ii) if m is stepwise effective for S, then Sm = V implies V m̃ = S;
(iii) τ ∈ C(m) if and only if τ̃ ∈ C(m̃); (iv) if m is consistent, so is m̃.

6. Prove the following facts stated in Lemma 10.2.3. (i) No token is identical
to its own reverse. (iii) For any two adjacent states S and V , there is
exactly one token producing V from S. (iv) Let m be a message that is
concise for some state, then the following two equalities hold

`(m) = |C(m)| and C(m) ∩ C(m̃) = ∅.

(vi) Suppose that m and n are stepwise effective for S and V , respectively,
with Sm = V and V n = W . Then mn is stepwise effective for S, with
Smn = W .

7. Prove Theorem 10.3.3.

8. Is it true that, in a medium, the content of any state is necessarily finite?
Prove the last statement or give a counterexample.

9. Prove that, in a medium, a state is defined by its content (Theorem 10.3.5).

10. Verify that the pair (P3,T3) defined in Example 10.3.8 satisfies Ax-
ioms [Ma] and [Mb]. Does the result extend to the family of partial orders
on n elements, for all n in N?

11. Verify that the family of all semiorders on a finite set can be represented
as a medium.

12. (Continuation.) Define the positive content family of a the collection all
semiorders on a finite set in the style used for the partial orders in Ex-
ample 10.3.8 for the partial orders. (Thus, the positive tokens are those
representing the addition of pairs to semiorders.) Is such a family always
a learning space?

13. (Continuation.) How about the collection of almost connected orders or
ac-orders on a finite set? Here, a relation R on a set X is an ac-order if it is
asymmetric and 2-connected, that is, R satisfies the condition R2R̄−1 ⊆ R
(cf. for example Doble et al., 2001, and many other references to this
concept there).

14. Verify that the family of positive contents in the graph of Figure 10.4
satisfies Axioms [Ma] and [Mb].

15. Prove that: (i) any medium can be oriented, and (ii) that a finite medium
(S,T) can be given 2|T|/2 orientations.

16. Prove Theorem 10.4.5.
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17. Is it true that, for any medium, an orientation can always be defined so
that the oriented medium has no root?

18. Prove the following two facts. (i) Any state in a medium can be made
a root by defining a suitable orientation. (ii) There always exists some
orientation ensuring that the positive contents of all the states are finite
sets. In particular, the states of any rooted medium have finite positive
contents. (Theorem 10.4.8).

19. Complete the proof of Theorem 10.4.9 by showing that Ŝ+ is discrimina-
tive.

20. Suppose that the positive class of an oriented medium is a learning space.
What can you say about the negative class?

21. Let F be a well-graded family of sets. Construct the family F∪ of all the
sets which are unions of sets in F. Under which necessary and sufficient
conditions on F can a medium be obtained from F∪ by defining the tokens
along the lines of (10.5) and (10.6)?

22. Prove Theorem 10.5.2.

23. Prove Theorem 10.5.13.





11

Probabilistic Knowledge Structures

The concept of a knowledge structure is a deterministic one. As such, it does
not provide realistic predictions of subjects’ responses to the problems of a
test. There are two ways in which probabilities must enter in a realistic model.
For one, the knowledge states will certainly occur with different frequencies
in the population of reference. It is thus reasonable to postulate the existence
of a probability distribution on the collection of states. For another, a sub-
ject’s knowledge state does not necessarily specify the observed responses.
A subject having mastered an item may be careless in responding, and make
an error. Also, in some situations, a subject may be able to guess the cor-
rect response to a question not yet mastered. In general, it makes sense to
introduce conditional probabilities of responses, given the states. A number of
simple probabilistic models will be described in this chapter. They will be used
to illustrate how probabilistic concepts can be introduced within knowledge
space theory. These models will also provide a precise context for the discus-
sion of some technical issues related to parameter estimation and statistical
testing. The material in this chapter must be regarded as a preparation for
the stochastic theories discussed in Chapters 12, 13 and 14.

11.1 Basic Concepts and Examples

11.1.1 Example. As an illustration, we consider the knowledge structure

H =
{
∅, {a}, {b}, {a,b}, {a, b, c}, {a, b, d},

{a, b, c, d}, {a, b, c, e}, {a, b, c, d, e}
}

(11.1)

with domain Q = {a, b, c, d, e} (see Figure 11.1). This example will be re-
ferred to many times in this chapter, under the name standard example. The
knowledge structure H is actually an ordinal knowledge space (in the sense
of Definition 3.8.1), with nine states. We suppose that any subject sampled
from a population of reference will necessarily be in one of these nine states.

J.-C. Falmagne, J.-P. Doignon, Learning Spaces, 
DOI 10.1007/978-3-642-01039-2_11, © Springer-Verlag Berlin Heidelberg 2011 
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More specifically, we assume that to each knowledge state K ∈ H is attached
a probability p(K) measuring the likelihood that a sampled subject is in that
state. We thus enlarge our theoretical framework by a probability distribution
p on the family of all knowledge states. In practice, the parameters p(K) must
be estimated from the assessment data.

?

{ a}

{ b}

{ a, b}

{ a, b, c}

{ a, b, d}

{ a, b, c, d}

{ a, b, c, e}

Q

Figure 11.1. Inclusion graph of the knowledge space H of Equation (11.1).

Notice that the states may not be directly observable. If careless errors or
lucky guesses are made, all kinds of ‘response patterns’ may be arise from the
states in H. A convenient coding will be adopted for these response patterns.
Suppose that a subject has correctly solved questions c and d, and failed to
solve a, b and e. We shall denote such a result by the subset {c, d} of Q. In
general, we shall represent a response pattern by the subset R of Q containing
all the questions correctly solved by the subject. There are thus 2|Q| possible
response patterns.

For any R ⊆ Q and K ∈ H, we denote by r(R,K) the conditional prob-
ability of response pattern R, given state K. For example, r({c, d}, {a, b, c})
denotes the probability that a subject in state {a, b, c} responds correctly to
questions c and d, and fails to solve a, b, and e. For simplicity, let us suppose
in this example that a subject never responds correctly to a question not in
his state. Writing ρ(R) for the probability of response pattern R, we obtain
for instance1

ρ({c, d}) = r({c, d}, {a, b, c, d}) p{a, b, c, d}+ r({c, d}, Q) p(Q). (11.2)

Indeed, the only two states capable of generating the response pattern {c, d}
are the states including it, namely, {a, b, c, d} and Q. We shall also assume
that, given the state, the response to the questions are independent. Writing
βq for the probability of an incorrect response to a question q in the subject’s
state, and using this independence assumption, we get

r({c, d}, {a, b, c, d}) = βaβb(1− βc)(1− βd), (11.3)

r({c, d}, Q) = βaβbβe(1− βc)(1− βd), (11.4)

1 Note that we simplify the writing of the probabilities and use p{. . .} for p({. . .}).
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and thus, from Equation (11.2),

ρ({c, d}) = βaβb(1− βc)(1− βd)p{a, b, c, d}+ βaβbβe(1− βc)(1− βd)p(Q).

In psychometrics, the type of assumption exemplified by Equations (11.3)
and (11.4) is often referred to as a ‘local independence’ condition. We follow
this usage in the definition below which generalizes the example and includes
the case in which a correct response to some question q may be elicited by a
state not containing q (thus, in the framework of the theory, a lucky guess).

11.1.2 Definition. A (finite, partial) probabilistic knowledge structure is a
triple (Q,K, p) in which

(i) (Q,K) is a finite partial knowledge structure2 with |Q| = m and |K| = n;
(ii) the mapping p : K→ [0, 1] : K 7→ p(K) is a probability distribution on K;

thus, for any K ∈ K, we have p(K) ≥ 0, and moreover,
∑
K∈K p(K) = 1.

A response function for a probabilistic knowledge structure (Q,K, p) is a func-
tion r : (R,K) 7→ r(R,K), defined for all R ⊆ Q and K ∈ K, and specifying
the probability of the response pattern R for a subject in state K. Thus, for
any R ∈ 2Q and K ∈ K, we have r(R,K) ≥ 0; moreover,

∑
R⊆Q r(R,K) = 1.

A quadruple (Q,K, p, r), in which (Q,K, p) is a probabilistic knowledge struc-
ture and r its response function will be referred to as a basic probabilistic
model. This name is justified by the prominent place of this model in this
book.

Writing R 7→ ρ(R) for the resulting probability distribution on the set of
all response patterns, we obtain for any R ⊆ Q

ρ(R) =
∑
K∈K

r(R,K)p(K). (11.5)

The response function r satisfies local independence if for each q ∈ Q, there
are two constants βq, ηq ∈ [0, 1[, respectively called (careless) error probability
and guessing probability at q, such that, for all R ⊆ Q and K ∈ K, we have

r(R,K) =

( ∏
q∈K\R

βq

)( ∏
q∈K∩R

(1− βq)
)( ∏

q∈R\K

ηq

)( ∏
q∈R∪K

(1− ηq)
)

(11.6)

(with R ∪K = Q \ (R ∪ K) in the last factor). The basic probabilistic
model satisfying local independence will be called the basic local independence
model. These concepts are fundamental in the sense that all the probabilistic
models discussed in this book (in Chapters 12, 13 and 14) will satisfy Equa-
tion (11.5), and most of them also Equation (11.6) (possibly with ηq = 0 for all
items q; see Remark 11.1.3 (a)). In some models, however, the existence of the
probability distribution p on the collection of states K will not be an axiom.

2 We recall that family of sets K is a partial knowledge structure if ∪K ∈ K

(cf. Definition 2.2.6).
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Instead, it will appear as a consequence of more or less elaborate assumptions
regarding the learning process by which a student moves around in the knowl-
edge structure, gradually evolving from the state ∅ of total ignorance to the
state Q of full mastery of the material.

11.1.3 Remarks. a) In the case of the knowledge space H of Equation (11.1),
there would thus be 8 + 2 · 5 = 18 parameters to be estimated from the
data: 8 = 9− 1 independent probabilities for the states, and two parameters
βq and ηq for each of the five questions in Q. This number of parameters
will seem unduly large compared to the 31 degrees of freedom in the data
(31 = 32−1 independent response frequencies of response patterns). There are
two ways in which this number of parameters may be reduced. The questions
of the test may be designed in such a manner that the probability of finding
the correct response by chance or by a sophisticated guess is zero. We thus
have ηq = 0 for all q ∈ Q. (We have in fact made that assumption in our
discussion of Example 11.1.1.) More importantly, the number of independent
state probabilities can also be reduced. Later in this chapter, and also in
Chapter 12, we investigate a number of learning mechanisms purporting to
explain how a subject may evolve from the state ∅ to the state Q. Typically,
such mechanisms set constraints on the state probabilities, effectively reducing
the number of parameters. Finally, we point out that this example, which
was chosen for expository reasons, is not representative of most empirical
situations in that the number of questions is unrealistically small. It is our
experience that the ratio of the number of states to the number of possible
response patterns decreases dramatically as the number of questions increases
(cf. Chapter 15 and, especially, Villano, 1991). The ratio of the number of
parameters to the number of response patterns will decrease accordingly.

b) The local independence assumption Equation (11.6) may be criticized
on the grounds that the response probabilities (represented by the parameters
βq and ηq) are attached to the questions, and do not vary with the knowledge
state of the subject. For instance, in Example 11.1.1, the probability βc of a
careless error to question c is the same in all four states: {a, b, c}, {a, b, c, d},
{a, b, c, e} and Q. However, weakening this assumption would result in a costly
increase of the already substantial number of parameters in the model. More to
the point, the probabilistic models described here are intended for situations
in which the core of the model, that is, the knowledge structure with the
probability distribution on the collection of states, gives an essentially accurate
picture of the data. The local independence assumption for careless errors is in
keeping with this view: if item q belongs to the student’s state, the probability
of a careless error should be the same, no matter what that state is. As for
the lucky guesses, their probabilities can be negligibly small if the items are
framed appropriately. This requirement obviously disqualifies any multiple
choice items. Note that the local independence asssumption is central to the
so called Latent Structure Analysis (see Lazarsfeld and Henry, 1968, which is
the main source for such models).
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11.2 An Empirical Application

The basic local independence model has been successfully applied in a number
of situations (see Falmagne et al., 1990; Villano, 1991; Lakshminarayan, 1995;
Lakshminarayan and Gilson, 1998; Taagepera, Potter, Miller, and Lakshmi-
narayan, 1997). For convenience of exposition, we have chosen to present here
a simple application to some fictitious data, which will be used repeatedly in
this chapter. Lakshminarayan’s experiment is described in Chapter 12.

11.2.1 The Data. We consider a situation in which 1,000 subjects have
responded to the five questions of the domain Q = {a, b, c, d, e} of Ex-
ample 11.1.1. The hypothetical frequencies of the 32 response patterns are
contained in Table 11.1. We write N(R) for the frequency of the response
pattern R. In the example given in Table 11.1, we thus have N(∅) = 80,
N({a}) = 92, and so forth. We also denote by

N =
∑
R⊆Q

N(R) , (11.7)

the number of subjects in the experiment (thus N = 1000 in this case). As in
earlier chapters, we set |Q| = m (so m = 5 here). The basic local independence
model (cf. Definition 11.1.2) depends upon three kinds of parameters: the
state probabilities p(K), and the response probabilities βq and ηq entering in
Equation (11.6). We denote by θ the vector of all these parameters. In the
case of Example 11.1.1, we set

θ = (p(∅), p{a}, . . . , p(Q), βa, . . . , βe, ηa, . . . , ηe).

Table 11.1. Frequencies of the response patterns for 1,000 fictitious subjects.

R Obs. R Obs. R Obs. R Obs.

∅ 80 ad 18 abc 89 bde 2

a 92 ae 10 abd 89 cde 2

b 89 bc 18 abe 19 abcd 73

c 3 bd 20 acd 16 abce 82

d 2 be 4 ace 16 abde 19

e 1 cd 2 ade 3 acde 15

ab 89 ce 2 bcd 18 bcde 15

ac 16 de 3 bce 16 Q 77

This parameter θ is a point in a parameter space Θ containing all possible
vectors of parameter values. The probability ρ(R) of a response pattern R
depends upon θ, and we shall make that dependency explicit by writing

ρθ(R) = ρ(R). (11.8)
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A key component in the application of the model is the estimation of
the parameters, that is, the choice of a point of Θ yielding the best fit. We
shall briefly review two closely related standard techniques for estimating the
parameters and testing the model.

11.2.2 The chi-square statistic. Among the most widely used indices for
evaluating the goodness-of-fit of a model to data is the chi-square statistic,
defined in this case as the random variable

CHI(θ;D,N) =
∑
R⊆Q

(
N(R)− ρθ(R)N

)2
ρθ(R)N

, (11.9)

in which θ is the vector of parameters, D symbolizes the data (that is, the vec-
tor of observed frequencies N(R)) and N and ρθ(R) are as in Equations (11.7)
and (11.8). Thus, the chi-square statistic is a weighted sum of all the square
deviations between the observed frequencies N(R) and the predicted frequen-

cies ρθ(R)N . The weights
(
ρθ(R)N

)−1
are normalizing factors ensuring that

CHI enjoys important asymptotic properties. Namely, if the model is correct,
then the minimum of CHI(θ;D,N) for θ varying in Θ converges (as N con-
verges to ∞) to a chi-square random variable. This holds under fairly general
conditions on the smoothness of ρθ as a function of θ, and under the assump-
tion that the response patterns given by different subjects are independent.
Specifically, for N large and considering D as a random vector, the random
variable minθ∈Θ CHI(θ;D,N) is approximately distributed as a chi-square
random variable with

v = (2m − 1)− (n− 1 + 2m) (11.10)

degrees of freedom (remember that |Q| = m and |K| = n). Denoting by θ̃
a value of θ that gives a global minimum, and by χ2

v a chi-square random
variable with v degrees of freedom, we recap this result by the formula

min
θ∈Θ

CHI(θ;D,N) = CHI(θ̃;D,N)
d≈ χ2

v , (for N large) (11.11)

where
d≈ means approximately distributed as. The r.h.s. of Equation (11.10)

computes the difference between the number of degrees of freedom in the
data, and the number of parameters estimated by the minimization. In the
case of Example 11.1.1, we would have v = (25−1)− (9− 1 + 2 · 5) = 13. The
convergence in Equation (11.11) is fast. A rule of thumb for the approximation
in (11.11) to be acceptable is that, for every R ⊆ Q, the expected number of
response patterns equal to R is greater than 5, i.e.

ρθ̃(R)N > 5. (11.12)

The result c = CHI(θ̃;D,N) of such a computation for some observed data
D is then compared with a standard table of representative values of the chi-
square random variable with the appropriate degrees of freedom (which is v
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in our case). The model is accepted if c lies in the bulk of the distribution,
and rejected if c exceeds some critical value.

11.2.3 Decision procedures. Typical decision procedures are:

1. Strong rejection: P(χ2
v > c) ≤ .01;

2. Rejection: P(χ2
v > c) ≤ .05;

3. Acceptance: P(χ2
v > c) > .05.

A value c leading to a rejection (resp. strong rejection) will be called signif-
icant (resp. strongly significant). In practice, a significant or even strongly
significant value of a chi-square statistic needs not always lead to a rejection
of the model. This is especially true if the model is providing a simple, de-
tailed description of complex data, and no sensible alternative model is yet
available.

11.2.4 Remarks. a) For large, sparse data tables (as is Table 11.1), the cri-
terion specified by (11.12) is sometimes judged to be too conservative, and
a minimum expected cell size equal to 1 may be appropriate (see Feinberg,
1981). This less demanding criterion will be used in all the analyses reported in
this chapter. When one fears that this criterion might fail, a simple solution is
to group the cells with low values. Suppose, for instance, that only three cells
have low frequencies, corresponding to the response patterns R,R′, R′′. These
three cells would be grouped into one. In the chi-square statistic, the three
terms corresponding to the response patterns R,R′, R′′ would be replaced by
the single term(

N(R) +N(R′) +N(R′′)− (ρθ̇(R) + ρθ̇(R
′) + ρθ̇(R

′′)
)
N
)2

(
ρθ̇(R) + ρθ̇(R

′) + ρθ̇(R
′′)
)
N

.

This grouping would result in a loss of two degrees of freedom for the chi-
square random variable in the decision procedure. The change of notation
from θ̃ to θ̇ for the estimate of θ in the last equation is meant to suggest that
a different global minimum may be obtained after grouping. Obviously, such
a grouping must proceed with caution, so that no bias ensue. Grouping the
cells a posteriori, on the basis of their low expected frequencies, would be poor
methodology.

b) It sometimes happens that the observed value c of the chi-square statis-
tic lies in the other tail of the distribution, e.g. P(χ2

v < c) < .05. Such a
result would suggest that the variability in the data is smaller than should be
expected, which is usually indicative of an error (in the computation of the
chi-square statistic, the number of degrees of freedom, or some other aspect
of the procedure or even the experimental paradigm).
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c) The minimum CHI(θ̃;D,N) in Equation (11.9), often called the chi-
square statistic, cannot usually be obtained by analytical methods. (Setting
equal to zero the derivatives in (11.9) with respect to each of the parameters
results in a non linear system.) Brute force search of the parameter space is
possible. A modification, due to Brent (1973), of a conjugate gradient search
method of Powell (1964) was used for our optimization problems. The actual
program was PRAXIS (Brent, 1973; Gegenfurtner, 1992)3. It should be noted
that one application of PRAXIS (or for that matter any other optimizing pro-
gram of that kind) does not guarantee the achievement of a global minimum.
Typically, the procedure is repeated many times, with varying the starting
values of the parameters, until the researcher is reasonably sure that a global
minimum has been reached.

d) All the statistical results and techniques used in this book are well-
known, and we shall rarely give supporting references in the text. Listed in
increasing order of difficulty, some standard references are Fraser (1958), Lind-
gren (1968), Brunk (1973), Cramér (1963), Lehman (1959). The last two are
classics of the literature.

11.2.5 Results. The parameter values obtained from the minimization of
the chi-square statistic for the data in Table 11.1 are given in Table 11.2. The
value of the chi-square statistic minθ∈Θ CHI(θ;D,N) was 14.7 for 31−18 = 13
degrees of freedom. According to the decision procedures listed in 11.2.3, the
model should be accepted, pending further results. Some comments on the
values obtained for the parameters will be found in the next section.

Table 11.2. Estimated values of the parameters obtained from the minimization
of the chi-square statistic of Equations (11.10)-(11.12). The value of the chi-square
statistic was 14.7 for 31− 18 = 13 degrees of freedom.

Response Probabilities

βa = .17 ηa = .00

βb = .17 ηb = .09

βc = .20 ηc = .00

βd = .46 ηd = .00

βe = .20 ηe = .03

State Probabilities

p(∅) = .05 p{a, b, c} = .04

p{a} = .11 p{a, b, d} = .19

p{b} = .08 p{a, b, c, d} = .19

p{a, b} = .00 p{a, b, c, e} = .03

p{a, b, c, d, e} = .31

3 We are grateful to Michel Regenwetter and Yung-Fong Hsu for all the computa-
tions reported in this chapter.
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11.3 The Likelihood Ratio Procedure

Another time-honored method, which will also be used in this book, is the
so-called likelihood ratio procedure.

11.3.1 Maximum likelihood estimates. In estimating the parameters of a
model, it makes good intuitive and theoretical sense to choose those parameter
values which render the observed data most likely. Such estimates are called
maximum likelihood estimates. In the case of the empirical example discussed
in the previous section, the likelihood of the data (for a given parameter
point θ) is obtained from the likelihood function∏

R⊆Q

ρθ(R)N(R). (11.13)

This computation relies on the reasonable assumption that the response
patterns given by different subjects are independent. In practice, maxi-
mum likelihood estimates of the parameter in the vector θ are obtained by
maximizing the logarithm (in base 10 for example) of the likelihood func-

tion from Equation (11.13). Let us denote by θ̂ a value of θ maximizing∑
R⊆QN(R) log ρθ(R), that is

max
θ∈Θ

∑
R⊆Q

N(R) log ρθ(R) =
∑
R⊆Q

N(R) log ρθ̂(R).

It turns out that, in most cases of interest, the maximum likelihood estimates
are asymptotically (thus, for N converging to ∞) the same as those obtained
from the minimization of the chi-square statistic. This means that, if the
parameter values in the vector θ̂ are maximum likelihood estimates, then for
large N , the chi-square statistic

CHI(θ̂;D,N) =
∑
R⊆Q

(
N(R)− ρθ̂(R)N

)2
ρθ̂(R)N

, (11.14)

is approximately distributed as a chi-square random variable with

v = 2m − 1− (n− 1)− 2m

degrees of freedom (compare with Equations (11.9) and (11.11)).

11.3.2 The likelihood ratio test. A statistical test of the model can be
obtained from the fact that, for large N ,

−2 log

∏
R⊆Q ρθ̂(R)N(R)∏
R⊆Q

(N(R)
N

)N(R)

d≈ χ2
v, (11.15)
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in which v and χ2
v have the same meaning as in Equations (11.10) and (11.11).

This result holds if ρ is a smooth enough function of the variables in θ, which
is the case in all the models considered here. The decision procedures are
as in 11.2.3. The statistical test associated with Equation (11.15) is called a
likelihood ratio test. The l.h.s. of (11.15) is referred to as a log-likelihood ratio
statistic. The concordance between the likelihood ratio and the chi-square
tests illustrated by Equations (11.12) and (11.11) hold in general. This fact is
sometimes expressed by the statement that the likelihood ratio test and the
chi-square test are asymptotically equivalent.

Maximum likelihood estimates of the parameters have been computed for
the data of Table 11.1. The results are given in Table 11.3.

Table 11.3. Maximum likelihood estimates of the parameters of the basic local
independence model defined in 11.1.2. The value of the log-likelihood ratio statistic
was 12.6, for 31-18=13 degrees of freedom.

Response Probabilities

βa = .16 ηa = .04

βb = .16 ηb = .10

βc = .19 ηc = .00

βd = .29 ηd = .00

βe = .14 ηe = .02

State Probabilities

p(∅) = .05 p{a, b, c} = .08

p{a} = .10 p{a, b, d} = .15

p{b} = .08 p{a, b, c, d} = .16

p{a, b} = .04 p{a, b, c, e} = .10

p{a, b, c, d, e} = .21

The value of the log-likelihood ratio statistic was 12.6 for 31 − 18 = 13
degrees of freedom. As in the case of the chi-square test (and not surprisingly,
in view of the asymptotic equivalence of the two tests), the data supports
the model. A comparison between Tables 11.2 and 11.3 indicates a reasonably
good agreement between the estimates of the parameters. In the rest of this
book, we shall systematically use likelihood ratio tests. Notice that the esti-
mated values of the ηi parameters in Table 11.3 are quite small, suggesting
that the true value of these parameters may be zero. We show in 11.3.6 how
to test this hypothesis in the framework of likelihood ratio procedures.

11.3.3 Remarks. a) If the statistical analyses reported above were based on
real data, the high values obtained for some of the βq parameters would be a
cause of concern. In the case of Item d, for instance, it would be difficult to
explain a situation in which a question has been fully mastered, but is nev-
ertheless answered incorrectly in 46% of the cases (according to Table 11.2).
However, the data are artificial and the analysis only intended to illustrate
some statistical techniques.

b) The estimates obtained for the parameters were actually more unstable
than what is suggested by a comparison between the values in Tables 11.2 and
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11.3. For some starting values of the parameters used by the PRAXIS routine,
the estimated values were sometimes quite different from those in the Tables
(for a chi-square value not very different from those reported). This is not
atypical for such search procedures. It usually suggests an overabundance of
parameters. In such cases, an equally good fit may be obtained by varying
only a subset of those parameters. An obvious candidate is the special case of
the basic local independence model in which all the ηq values are kept fixed,
equal to 0.

c) An examination of Equation (11.15) indicates that the log-likelihood
ratio statistic is based on a comparison of two models, one represented in the
denominator, and the other in the numerator. The denominator of (11.15)
computes the likelihood of the data for a very general multinomial model
assuming only that there is some probability F (R) associated with each re-
sponse pattern R ⊆ Q. It is well-known that the maximum likelihood esti-
mates of the multinomial parameters F (R) is their relative frequency: we have

F̂ (R) = N(R)/N . These maximum likelihood estimates are used in the com-
putation of the likelihood in the denominator of (11.15). In the numerator of
(11.15), we have a similar expression for the basic local independence model,
involving also maximum likelihood estimates.

The approximation in Equation (11.15) is based on a general result which
is stated informally below, leaving aside some technical conditions.

11.3.4 Theorem. Let Ω be an s-dimensional subset of Rs. Suppose that
f(ω;D,N) is the likelihood of the data D according to some model, where
ω ∈ Ω represents a vector of s independent parameters of the model, N
represents the number of observations, and f is a smooth function of ω. Let
Ω′ be a u-dimensional subset of Ω with 0 < u < s. If the vector ω0 of the
true values of the parameters lies in Ω′, then, under fairly general conditions
on the sets Ω and Ω′, we have, for large N ,

−2 log
supω∈Ω′ f(ω;D,N)

supω∈Ω f(ω;D,N)

d≈ χ2
s−u. (11.16)

11.3.5 Remark. The subset Ω′ in Equation (11.16) specifies a submodel or
a special case of the model represented in the denominator. The likelihood
ratio statistic in (11.16) yields a test of the hypothesis ω0 ∈ Ω′ against the
general model that ω0 ∈ Ω. The number of degrees of freedom in the chi-
square is the difference between the number of estimated parameters in the
denominator and in the numerator. In the case of the likelihood ratio test of
the basic local independence model, we have Ω = Θ = ]0, 1[s with s = 2m−1,
and Ω′ = Θ′ is a u-dimensional surface in Θ, with u = n− 1 + 2m < 2m − 1,
specified by Equations (11.5) and (11.6). The importance of this theorem
from the standpoint of applications is that it justifies a nested sequence of
statistical tests of increasing specificity, corresponding to a chain of subsets
Ω ⊃ Ω′ ⊃ Ω′′ ⊃ · · · of decreasing dimensionality.
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11.3.6 Application. We illustrate the use of this theorem to test, for the data
of Table 11.1, the hypothesis that ηq = 0 in the framework of the basic local
independence model. This hypothesis specifies the subset Θ′′ of Θ′ defined by

Θ′′ = {θ ∈ Θ′ ∀q ∈ Q : ηq = 0},
where θ symbolizes the vectors

θ = (p(∅), p{a}, . . . , p(Q), βa, . . . , βe, ηa, . . . , ηe).

In other words, the model in which all the ηi’s are equal to zero is now
regarded as a submodel of the basic local independence model. Using Theo-
rem 11.3.4, we obtain the statistic

−2 log
maxθ∈Θ′′

∏
R⊆Q ρθ(R)N(R)

maxθ∈Θ′
∏
R⊆Q ρθ(R)N(R)

d→≈ χ2
5, (11.17)

with 5 = 18− 13. The denominator of this log-likelihood ratio statistic is the
numerator of Equation (11.15). The value obtained for this chi-square was 1.6,
which is nonsignificant (in the terms of 11.2.3). Accordingly, we temporarily
retain, for these data, the special case ηq = 0 for all q ∈ {a, b, . . . , e}. In the
sequel, this model will be referred to as the basic local independence model
with no guessing.

11.4 Learning Models

The number of knowledge states of actual knowledge structures tend to be
quite large. For example, in an experiment reviewed in Chapter 17, the num-
ber of states is on the order of several million (for about 262 items). This
presents a problem for practical applications of the basic local independence
model, because it means that a prohibitively large number of parameters—e.g.
the probabilities of all these states in the relevant population—may have to be
estimated from the empirical frequencies of the response patterns. Even with
substantial data sets, reliable estimates may be hard to obtain4. One possi-
ble solution to this difficulty is to set constraints on the state probabilities,
effectively reducing the number of independent quantities involved.

A natural idea is to postulate some learning mechanism describing the
successive transitions of a student, over time, from the state ∅ of complete
ignorance to the state Q of full mastery of the material. Several examples of
models will be described. All are based on the following basic principle:

The probability that, at the time of the test, a subject is in a state K
of the structure is expressed as the probability that this subject

(i) has successively mastered all the items in the state K, and
(ii) has failed to master any item immediately accessible from K.

4 However, see Villano (1991).
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Here, assuming that the structure is discriminative (cf. Definition 2.1.5), we
consider an item q to be immediately accessible, i.e. learnable, from the state
K if K + {q} is again a state. In other words, q belongs to the outer fringe of
the state K, namely KO = {q ∈ Q \K K ∪ {q} ∈ K} (cf. Definition 4.1.6).

11.4.1 A simple learning model. The model considered in this section
makes strong independence assumptions regarding the learning process. Con-
sider a discriminative knowledge structure (Q,K). For each item q in Q, we
introduce one parameter gq, with 0 ≤ gq ≤ 1, intended to measure the prob-
ability that q is mastered. To define a probability distribution p on K, we
suppose that, for each state K, all the events in the two classes: ‘mastering
any item q ∈ K’ and ‘failing to master any item q ∈ KO’ are (conditionally)
independent in the sense of the formula:

p(K) =
∏
q∈K

gq
∏

q′∈KO

(1− gq′). (11.18)

This formula applies to all states K by virtue of the convention that a product
of zero terms equals 1. When p is a probability distribution on K, and a
response function r is provided, the quadruple (Q,K, p, r) is called a simple
learning model. This model specifies the state probabilities in terms of only
m = |Q| parameters, regardless of the number of states. In the case of our
standard example (Figure 11.1), the probabilities of the states are given by
the formulas in Table 11.4.

Table 11.4. Probabilities of the
states in the structure H of Equa-
tion (11.1) and Figure 11.1 for the
simple learning model.

States Probabilities

∅ (1− ga)(1− gb)

{a} ga(1− gb)

{b} gb(1− ga)

{a, b} gagb(1− gc)(1− gd)

{a, b, c} gagbgc(1− gd)(1− ge)

{a, b, d} gagbgd(1− gc)

{a, b, c, d} gagbgcgd(1− ge)

{a, b, c, e} gagbgcge(1− gd)

{a, b, c, d, e} gagbgcgdge.

The probabilities of the nine states are thus expressed in terms of 5 param-
eters. It is easy to verify that these particular probabilities add up to one.
In general, however, the quantities p(K) defined by Equation (11.18) do not
necessarily specify a probability distribution. We give two examples in the
next section.
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11.4.2 Test of the simple learning model. This model was tested on the
data of Table 11.1. We made the assumption that the response function r was
specified by the local independence condition with no guessing. The resulting
model is then a special case of the basic local independence model with no
guessing, which has already been tested. Accordingly, it makes sense to use a
likelihood ratio procedure.

A likelihood ratio test was performed, which yielded a value 15.5 for the
log-likelihood ratio statistic. The number of degrees of freedom is 3 = 13−10.
Indeed, the basic local independence model with no guessing has 13 param-
eters, while the simple learning model (with the same local independence
assumptions) has 10 parameters, and no grouping of the response patterns
was necessary. This value of the chi-square statistic is very significant, leading
to a strong rejection of the model.

11.4.3 Remark. This model was introduced to illustrate, in a simple case,
how assumptions about the learning process could dramatically reduce the
number of parameters. Objections can certainly be made to the hypothesis
that the probability of mastering an item q does not depend on the current
state K of the subject, provided that the item is learnable from that state,
that is, provided that q ∈ KO. This seems very strong. The independence
assumptions are also difficult to accept. This model can be elaborated by
assuming that the probability of mastering an item may depend upon past
events, for example upon the last item learned. We shall not develop this idea
here5.

A different kind of model is considered later in this chapter, in which a
knowledge structure is regarded as the state space of a Markov chain describ-
ing the learning process. Before discussing such a model, we return to a ques-
tion left pending concerning the conditions under which the simple learning
model can be defined. We shall ask: under which conditions do the quantities
defined by Equation (11.18) add up to one?

11.5 A Combinatorial Result

The simple learning model introduced in 11.4.1 specifies the values p(K) in
terms of the parameters gq, for all K in K. However, the following two exam-
ples show that the real-valued mapping p defined by Equation (11.18) does
not always provide a probability distribution on K. This prompts searching
for conditions on a knowledge structure that guarantee that the simple learn-
ing model is applicable. In other words, we look for conditions under which
Equation (11.18) defines a genuine probability distribution. Interestingly, the
concept of a learning space will be crucial.

5 However, see Problem 3.
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11.5.1 Example. Let G = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {a, b, c}} and define
gq = 1

2 for all q ∈ {a, b, c}. Equation (11.18) gives

p(∅) = p{a} = p{a, b} = p{a, c} = p{a, b, c} =
1

8
,

p{b} = p{c} =
1

4
,

yielding
∑
K∈G p(K) = 9

8 . This knowledge structure is well-graded, but is not
a knowledge space: we have {b}, {c} ∈ G, but {b, c} /∈ G.

11.5.2 Example. Let H = {∅, {c}, {a, b}, {b, c}, {a, b, c}}. Then according to
Equation (11.18),∑
K∈H

p(K) =
(
1− gc

)
+ gc(1− gb) + gagb(1− gc) + gbgc(1− ga) + gagbgc

= 1 + gagb(1− gc),

which is equal to 1 only for some special values of ga, gb, and gc. It is easily
checked that H is a knowledge space which is not well-graded.

We state a preparatory result.

11.5.3 Theorem. Let (Q,K) be a finite discriminative knowledge structure.
Then (Q,K) is a learning space if and only if it satisfies the following condition:

[U] Each set A ⊆ Q includes at most one state K such that KO ∩A = ∅.

Proof. Suppose that Condition [U] holds. We first show that (Q,K) is a
knowledge space, and then that it is well-graded. If L, M are two states in K,
we prove L ∪M ∈ K by recurrence on |L4M |. The conclusion clearly holds
if |L 4 M | = 0, so let us assume |L 4 M | > 0. Condition [U] applied to
A = L ∪M entails that not both of the distinct states L and M can play
the role of K. Thus LO ∩ A 6= ∅ or MO ∩ A 6= ∅ (or both). This implies the
existence of some item q with

q ∈M \ L and L ∪ {q} ∈ K

or

q ∈ L \M and M ∪ {q} ∈ K.

In the first case, we get by recurrence (L∪ {q})∪M ∈ K, that is L∪M ∈ K.
The conclusion the second case follows by symmetry. Thus Condition [U]
implies that (Q,K) is a space.

Condition [U] also implies that (Q,K) is well-graded. Indeed, if this were
not true, we would derive by Lemma 2.2.3 the existence of two states L and
M with L ⊂ M , and such that |M \ L| ≥ 2 with no state N satisfying
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L ⊂ N ⊂M . Taking A = M , we derive the required contradiction since both
L and M can play the role of K in Condition [U].

We conclude that (Q,K) is a well-graded knowledge space. By Theorem
2.2.4, it is thus a learning space.

Conversely, suppose that (Q,K) is a learning space. For any subset A of Q,
the only state K as in Condition [U] is the largest state included in A (that
is, the union of all the states included in A).

11.5.4 Theorem. When (Q,K) is a learning space space, the real-valued
mapping p defined by Equation (11.18) specifies a probability distribution on
K for any mapping g from K to [0, 1]. As a partial converse, if (Q,K) is any
finite discriminative knowledge structure, g is a mapping from Q to ]0, 1[, and
the mapping p defined from Equation (11.18) is a probability distribution,
then (Q,K) is a learning space.

Proof.6 Suppose that (Q,K) is a learning space. Thus, by Theorem 11.5.3,
Condition [U] is satisfied. Let g be any function from Q to [0, 1]. We define a
function h : 2Q → [0, 1] by

h(A) =
∏
q∈A

gq
∏

q∈Q\A

(1− gq).

With p : K→ [0, 1] from Equation (11.18), using the mapping h just defined,
we get

p(K) =
∏
q∈K

gq
∏
q∈KO

(1− gq)

=

∏
q∈K

gq
∏
q∈KO

(
1− gq)

× ∏
q∈Q\(K∪KO)

(
gq + (1− gq)

)
=

∑
A∈2Q, A⊇K,A∩KO=∅

h(A).

(The last equality follows by distributing the rightmost product). Thus

∑
K∈K

p(K) =
∑
K∈K

 ∑
A∈2Q, A⊇K,A∩KO=∅

h(A)

 . (11.19)

On the other hand,

1 =
∏
q∈Q

(
gq + (1− gq)

)
=
∑
A∈2Q

h(A). (11.20)

6 Except for the argument that Condition [U] implies wellgradedness, we owe this
proof to an anonymous referee of Falmagne (1994).
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By Condition [U], each subset A of Q includes exactly one state K with
A ∩KO = ∅. We conclude that each term h(A), for A ∈ 2Q, appears exactly
once in the right-hand side of Equation (11.19). Hence, by comparing (11.19)
and (11.20), we derive

∑
K∈K p(K) = 1. Moreover, the converse also holds

since g takes its values in ]0, 1[, (so h(A) > 0 for all subsets A).

11.6 Markov Chain Models

The models described in this section also explain the state probabilities of
the basic probabilistic model by a learning process. However, these models
differ from the simple learning model of Section 11.4.1 in that the time is
introduced explicitly, taking discrete values7 n = 1, 2, . . . The response func-
tion r is specified by the parameters βq and ηq as in the local independence
Equation (11.6). We assume that the knowledge structure is well-graded8. All
these models are formulated in the framework of Markov chain theory9.

11.6.1 Markov chain Model 1. We assume that learning takes place in dis-
crete steps. On any given step, at most one item can be mastered. In the case
of our standard example in Figure 11.1, a transition between state ∅ to state
{a} or to state {b} may occur on step one or later, if neither of the two states
{a} or {b} have been achieved. The probabilities of such transitions are speci-
fied by some parameters ga and gb. We assume that these probabilities do not
depend upon past events. Thus, the probability of a transition from state K
to state K + {q}, with q in the outer fringe of K, is equal to gq. A sample of
subjects tested at a given time is assumed to have accomplished some number
n of steps. This number is the same for all subjects and is a parameter, which
has to be estimated from the data. If n is large, the probabilities of states
containing many items will be large.

This model is a Markov chain having as a state space the knowledge struc-
ture K (so, the states of the Markov chain coincide with the knowledge states).
The transition probabilities, contained in a matrix M = (mKL) with mKL

specifying the probability of a transition from K to L, are defined by

mKL =


gq if L = K + {q}, with q ∈ KO,

1−∑q∈KO gq if L = K,

0 otherwise.

(11.21)

A case of such a matrix is given in Table 11.5 for our standard example
of the knowledge structure H defined in (11.1.1). For simplicity, we represent

7 Note that, in this section, n does not denote the number |K| of states.
8 It is thus finite and discriminative; cf. 2.2.2.
9 For an introduction, see Feller (1968), Kemeny and Snell (1960), Parzen (1994),

or Shyryayev (1960).



204 11 Probabilistic Knowledge Structures

any knowledge state by a string listing its elements. Also, since the matrix is
quite large, we adopt the abbreviations

gq = 1− gq and gqr = 1− gq − gr (for q, r ∈ {a, b, c, d, e}). (11.22)

The process begins with a vector ν0 specifying the initial probabilities of
the states. (Since the states of the Markov chains are confounded with the
knowledge states, no clash of terminology can arise.) The probabilities after
one step are thus given by the row vector

ν1 = ν0M.

Table 11.5. Transition matrix M of the Markov Model 1, for our standard example.

∅ a b ab abc abd abcd abce Q

∅ gab ga gb 0 0 0 0 0 0

a 0 gb 0 gb 0 0 0 0 0

b 0 0 ga ga 0 0 0 0 0

ab 0 0 0 gcd gc gd 0 0 0

abc 0 0 0 0 gde 0 gd ge 0

abd 0 0 0 0 0 gc gc 0 0

abcd 0 0 0 0 0 0 ge 0 ge

abce 0 0 0 0 0 0 0 gd gd

Q 0 0 0 0 0 0 0 0 1

It may often be sensible to suppose that the subjects start the learning
process in state ∅. In this case, the initial probability vector takes the form

ν0 = (1, 0, . . . , 0︸ ︷︷ ︸
|K| terms

).

If this assumption is used in the case of our example, the probabilities of the
states after the first and the second step would then be

ν1 = (gab, ga, gb, 0, 0, 0, 0, 0, 0),

ν2 = (g2
ab, gabga + gagb, gabgb + gbga, 2gagb, 0, 0, 0, 0, 0),

that is, the first row of M1 = M and M2 respectively. In general, the state
probabilities after state n are obtained from

νn = ν0M
n.
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Writing νn(K) for the probability of state K at step n, we obtain, for the
probability ρn(R) of a response pattern R at step n, the prediction

ρn(R) =
∑
K∈H

r(R,K)νn(K). (11.23)

Using standard concepts of the theory of Markov chains10, it is easy to
show that if gq > 0 for all q, then

lim
n→∞

νn(K) =

{
1 if K = Q

0 otherwise.

Notice that the number of parameters, including the parameters βq and ηq
entering in the specification of the function r in Equation (11.6) and the
step number n representing the time of the test, cannot exceed 3m+ 1, with
m = |Q|. We shall not develop this model any further here, and no empirical
application will be presented.

11.6.2 Remarks. a) This model is vulnerable to the same kind of criticisms
as those addressed to the simple learning model. In particular, the probability
of learning a new item q depends upon past events only in a trivial way: this
probability is equal to gq if q is learnable from the subject’s current state K,
that is, if q ∈ KO, and is equal to 0 otherwise. However, a straightforward
adaptation of this model is available, which is outlined in our next subsection
(Markov Chain Model 2).

b) Another objection lies in the implicit assumption that all the subjects
had the same amount of learning, represented by the step number n in Equa-
tion (11.23). The only difference between the subjects’ states lies in the chance
factors associated with the transition parameters gq. This model could be gen-
eralized by postulating the existence of a probability distribution on the set of
positive integers representing the learning step. For instance, we could assume
that the learning step is distributed as a negative binomial. These develop-
ments will not be pursued here (but see Problem 6).

c) An essential difference between this model and the Simple Learning
Model should not be overlooked. Markov Model 1 is capable of predicting
the results of data obtained from a sample of subjects having been tested
several times. Suppose, for example, that the same test has been given to a
sample of subject before and after a special training period. A pair (R,R′) of
response patterns is thus available for each subject. The required prediction
concerns the probabilities ρn,n+j(R,R

′) of observing response pattern R at
step n and response pattern R′ at step n+j (with n and j being parameters).
Using standard techniques of Markov chains theory, these predictions could
be derived from Markov Model 1 (and also from Markov Model 2 below).
The number of parameters would not exceed 3m+ 2: we would have the same

10 Some basic terminology of Markov chains is recalled in Section 14.4.
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parameters as in the case of a single test, plus one, namely the positive integer
j entering in the specification of the step number n + j of the second test.
This parameter could be used as a measure of the efficiency of the training
period. Such predictions could not be derived from the Simple Learning Model
without further elaboration (cf. Problem 7).

11.6.3 Markov Chain Model 2. The main concepts are as in Markov Chain
Model 1, except that the last item learned affects the probabilities of learn-
ing a new one. We also have a Markov chain, but we have to keep track of
the last item learned. In other words, except for the empty set, the states of
the Markov chain take the form of a pair (K, q), with q in the inner fringe
KI = {s ∈ Q K \ {s} ∈ K} of K (cf. Definition 4.1.6).

To avoid confusion, we shall refer to the states of the Markov chain as
m-states. The probability of a transition from m-state (K, q), with q ∈ KI, to
some m-state (K∪{s}, s) (this corresponds to a transition from the knowledge
state K to a knowledge state K + {s}) depends only on q and s. We denote
it as gqs. For every m-state (K, q), the probabilities gqs satisfy the constraint∑
s∈KO gqs ≤ 1.

We also set the probability of remaining in m-state (K, q) equal to
1 −∑s∈KO gqs. Hence the probabilities of a transition from m-state (K, q)
to any other m-state (K ′, s), with K ′ 6= K + {s}, are equal to zero. Needless
to say, the empty set is also a m-state. The probability of a transition from
that state to state (∅, q) is denoted by g0q. All the other details are as in
Model 1. We leave further developments as Problem 15.

11.7 Probabilistic Projections

In Section 2.4, we defined a projection of a knowledge structure (Q,K) as a
knowledge structure (Q′,K|Q′) whose states are the traces of the states of K
on some nonempty set Q′ ⊂ Q, thus

K|Q′ = {L ∈ 2Q
′ ∃K ∈ K : L = K ∩Q′}.

The motivation for this concept in the context of this chapter is that some
empirical knowledge structure may be so large that a direct statistical study
aimed at estimating the state probabilities may not be feasible, even in the
framework of learning models such as those that we just described.

In such a case, partial information on these probabilities can be obtained
from studying projections of the given knowledge structure. Consider, for ex-
ample, a knowledge structure with a domain containing 300 problems of high
school mathematics covering say, beginning algebra11. The relevant knowl-
edge structure may contain several millions knowledge states. The empirical

11 Three hundred or so items is realistic for beginning algebra (see Chapter 17).
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analysis of such a structure encounters two kinds of difficulties. For one, it
may not be practical to propose a 300 problem test to a large enough number
of students. For the other, even if such a test is given, the analysis of the data
in terms of probabilistic knowledge structures may be very difficult, in partic-
ular because of the large number of parameters to be estimated. However, the
analysis of a number of shorter tests made of problems taken from the same
domain may be manageable, and would reveal useful information on the full
structure.

Notice that the probabilities of the knowledge states of the parent struc-
ture have a natural importation into any projection. This is illustrated in the
example below.

11.7.1 Example. Suppose that the states of the knowledge structure

H =
{
∅, {a}, {b}, {a, b}, {a, b, c},{a, b, d}, {a, b, c, d},

{a, b, c, e}, {a, b, c, d, e}
}

of our standard example occur in a population of reference with the probabil-
ities listed below:

p(∅) = .04 p{a, b} = .12 p{a, b, c, d} = .13

p{a} = .10 p{a, b, c} = .11 p{a, b, c, e} = .18 (11.24)

p{b} = .06 p{a, b, d} = .07 p{a, b, c, d, e} = .19

If a test consisting only of questions a, d and e is considered, the knowledge
state {a, d} of H′ = H|{a,d,e} will occur in the population with a probability

p′{a, d} = p{a, b, d}+ p{a, b, c, d} = .07 + .13 = .20.

Indeed, any student in state {a, b, d} or {a, b, c, d} of the structure H will
appear to be in the state {a, d} of the structure H′ if only questions a, d and
e are considered.

More generally, the probability p′(J) of any state J of H′ is the sum
of the probabilities p(K) of all the states K of H having their trace on
{a, d, e} equal to J . Therefore, all the state probabilities p′ are as follows:

p′(∅) = .10, p′{a} = .33, p′{a, d} = .20,

p′{a, e} = .18, p′{a, d, e} = .19.
(11.25)

Definition 11.7.3 generalizes this example. We first recall some concepts
and notation from an earlier definition (cf. 2.4.1).

11.7.2 Definition. Let (Q,K) be a knowledge structure, and let K′ = K|Q′

be the projection of K on some proper subset Q′ ⊂ Q. Notice that the mapping
K 7→ K ∩ Q′ = J from K onto the projection K|Q′ defines an equivalence
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relation on the parent structure K, with equivalence classes12

[K/Q′] = {K ′ ∈ K K ∩Q′ = K ′ ∩Q′}.
For any J ∈ K|Q′ we write J� = {K ∈ K K ∩Q′ = J}. The family J� ⊆ K is
called the parent family of J , and we have ∪J∈K′J� = K. The ambiguity that
may arise from this compact notation when more than one induced family is
considered will always be eliminated by the context.

11.7.3 Definition. Suppose that (Q,K, p) is a probabilistic knowledge struc-
ture (cf. 11.1.2), with K′ and Q′ as in Definition 11.7.2. In this case, the triple
(Q′,K′, p′) is called the (probabilistic) projection induced by Q′ if for all
J ∈ K′ we have

p′(J) =
∑
K∈J�

p(K). (11.26)

As the parent families J� are equivalence classes of a partition of K, we
have ∑

J∈K′
p′(J) =

∑
J∈K′

∑
K∈J�

p(K) =
∑
K∈K

p(K) = 1.

From the standpoint of applications, the inverse case is the important one:
the state probabilities of a projection are known, and one wishes to make some
inferences on the state probabilities of the parent structure.

11.7.4 Example. Let H and H′ be as Example 11.7.1, and suppose that
only the state probabilities p′(J), for J ∈ H′, are available, their values being
those given in Equation (11.25). For instance, the only thing we know about
the state probabilities p(∅) and p{b} is that they have to satisfy p(∅)+p{b} =
p′(∅) = .10. In this case, it may seem reasonable to split the mass of the state
∅ of H′ into two equal parts, and to set p(∅) = p{b} = p′(∅)/2 = .05.

In general, the idea is to assign, for each J ∈ H′, the same probability to
each state of the equivalence class J�. The resulting probabilities for all the
states of H are as follows

p(∅) = .05 p{a, b} = .11 p{a, b, c, d} = .10

p{a} = .11 p{a, b, c} = .11 p{a, b, c, e} = .18

p{b} = .05 p{a, b, d} = .10 p{a, b, c, d, e} = .19

11.7.5 Definition. Let K′ = K|Q′ be the projection induced by a proper
subset Q′ of Q, and suppose that (Q′,K′, p′) is a probabilistic knowledge
structure. Then (Q,K, p) is a uniform extension of (Q′,K′, p′) to (Q,K) if for
all K ∈ K

p(K) =
p′(K ∩Q′)
|(K ∩Q′)�| . (11.27)

12 The shorter notation [K] was used in Definition 2.4.1 for these equivalence classes.
The more explicit [K/Q′] is needed here because several projections are in play.
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11.8 Nomenclatures and Classifications

We can also think of combining the information from several probabilistic
projections of a given knowledge structure on different subsets of its domain in
order to manufacture the probabilistic parent structure. This section sketches
the mechanism of such a construction.

11.8.1 Definition. Let Q1, . . . , Qk be nonempty subsets of the domain of a
knowledge structure (Q,K). If ∪ki=1Qi = Q, then the collection of projections
K|Qi , i = 1, . . . k is a nomenclature of (Q,K). If {Q1, . . . , Qk} is a partition
of Q, then the nomenclature is called a classification.

A simple result in this connection is as follows.

11.8.2 Theorem. Let {Q1, . . . , Qk} be a finite collection of subsets of the
domain Q of a knowledge structure K. Then, for any state K, we have

[K/(Q1 ∪ · · · ∪Qk)] = [K/Q1] ∩ · · · ∩ [K/Qk]. (11.28)

Moreover, if the collection of projections K|Qi is a nomenclature, then

{K} = [K/Q1] ∩ · · · ∩ [K/Qk]. (11.29)

Proof. Denoting by ∧ the logical conjunction, it is easily verified that

J ∩ (Q1 ∪ · · · ∪Qk) = K ∩ (Q1 ∪ · · · ∪Qk) ⇐⇒ ∧ki=1(J ∩Qi = K ∩Qi).

This implies Equation (11.28). The special case follows immediately.

11.8.3 Remark. A special case of Theorem 11.8.2 arises when each of the
sets Qi contains a single element. We have then, using the notation Kq (resp.
Kq̄) for the collection of all states containing (resp. not containing) q (cf. 2.1.4,
resp. 9.1.2),

[K/{q}] =

{
Kq if q ∈ K,
Kq̄ if q /∈ K.

11.9 Independent Projections

Combining the state probabilities of several projections to construct a prob-
ability distribution for the parent structure is feasible in certain cases; for
instance, if the projections can be considered as ‘independent’ in the sense of
the next definition.
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11.9.1 Definition. Let (Q,K, p) be a probabilistic knowledge structure
(cf. 11.1.2), and let P be the induced probability measure on the power
set of K. (Thus, for any F ⊆ K, P(F) =

∑
K∈F p(K).) Take two proper

subsets Q′, Q′′ ⊂ Q, and consider the probabilistic projections (Q′,K′, p′)
and (Q′′,K′′, p′′) (in the sense of Definition 11.7.3). Two states J ∈ K′,
L ∈ K′′ are called independent if the events J� = {K ∈ K K ∩ Q′ = J}
and L� = {K ∈ K K ∩ Q′′ = L} are independent in the probability space
(K, 2K,P), that is if

P(J� ∩ L�) = P(J�) · P(L�) = p′(J) · p′′(L).

The projections (Q′,K′, p′) and (Q′′,K′′, p′′) are independent if any state
K ∈ K has independent traces on Q′ and Q′′.

These concepts extend in a natural manner to the case of an arbitrary (fi-
nite) number of structures. Suppose that Υ = (Qi,Ki, pi)1≤i≤k is a collection
of probabilistic projections of a probabilistic knowledge structure (Q,K, p).
A collection of traces Ji ∈ Ki, i = 1, . . . , k is independent if

P(

k⋂
i=1

Ji
�) =

k∏
i=1

P(Ji
�) =

k∏
i=1

pi(Ji).

(It is not sufficient to require that the traces Ji are pairwise independent; see
Problem 13.) The collection Υ is said to be independent if any state K of
the parent structure K has an independent collection of traces K ∩Qi. If, in
addition, Υ is a nomenclature (cf. 11.8.1), then it is called an independent
representation of (Q,K, p). In this case, we must have for any K ∈ K, using
Equation (11.29) in Theorem 11.8.2,

P({K}) = P(∩ki=1[K/Qi]) =

k∏
i=1

P([K/Qi]). (11.30)

11.9.2 Examples. a) With H and H′ as in Example 11.7.1, consider the
projection

H′′ = {∅, {b}, {b, c}, {b, c, e} },
induced by H on {b, c, e}. Using Equation (11.26) we obtain the state proba-
bilities of H′′ from those of H given in Equation (11.24):

p′′(∅) = .14, p′′{b} = .25, p′′{b, c} = .24, p′′{b, c, e} = .37.

(Notice in passing that {H′,H′′} form a nomenclature of H.) Any state H of
H belongs to a class of the partition generated by intersecting the classes of
the two partitions associated with H′ and H′′. We have, for example, for the
empty state of H

∅ ∈ (∅ ∩ {a, d, e})� ∩ (∅ ∩ {b, c, e})� = {∅, {b}} ∩ {∅, {a}} = {∅}.

The states ∅ ∈ H′ and ∅ ∈ H′′ are not independent, since we have
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p′(∅)× p′′(∅) =
(
p(∅) + p{b}

)
×
(
p(∅) + p{a}

)
= (.04 + .06)× (.04 + .10)

= .014

6= .04 = p(∅).

Problem 8 asks the reader to modify the state probabilities in this example
in such a way that the the states ∅ ∈ H′ and ∅ ∈ H′′ are independent, but
the projections H′ and H′′ themselves are not.

b) On the other hand, consider the knowledge structure {∅, {a}, {b}, {a, b}},
with states probabilities

p(∅) = .05, p{a} = .15, p{b} = .20, p{a, b} = .60.

The two probabilistic projections induced on {a} and {b} are independent,
and thus form a independent representation (Problem 9). The following result
is a straightforward consequence of Definition 11.9.1.

11.9.3 Theorem. If (Qi,Ki, pi), i = 1, . . . , k is an independent representa-
tion of a knowledge structure (Q,K, p), then

∑
K∈K

k∏
i=1

pi(K ∩Qi) = 1.

Proof. Writing P for the probability measure induced on 2K, we obtain,
using Equation (11.30),

1 =
∑
K∈K

p(K) =
∑
K∈K

P({K}) =
∑
K∈K

k∏
i=1

P([K/Qi]) =
∑
K∈K

k∏
i=1

pi(K ∩Qi).

This suggests the following construction. Consider a collection of projec-
tions (Qi,Ki) forming a representation of a basic knowledge structure (Q,K),
and suppose that the state probabilities pi of the projections are available.
If one has reasons to believe that the projections are approximately indepen-
dent, then the state probabilities p(K) of the parent could be approximated
by the formula

p(K) =

∏k
i=1 pi(K ∩Qi)∑

L∈K
∏k
i=1 pi(L ∩Qi)

.

The concept of independence introduced in this section is consistent with
other, standard ones. As an example, we consider the correlation between
items.
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11.9.4 Definition. Take a probabilistic knowledge structure (Q,K, p) and
suppose that the basic local independence model holds (cf. Definition 11.1.2).
We thus have a collection of parameters βq, ηq ∈ [0, 1[, q ∈ Q, specifying
the response function r of Equation (11.6). For any q ∈ Q, define a random
variable

Xq =

{
1 if the subject’s response is correct,

0 otherwise.

The Xq’s will be called item indicator random variables.

11.9.5 Theorem. Assume the basic local independence model holds, and
consider the following three conditions for two items q and q′ with q 6= q′:

(i) the item indicator random variables Xq, Xq′ are independent;
(ii) their covariance vanishes: Cov(Xq,Xq′) = 0;

(iii) the probabilistic projections {{∅, {q}} and {∅, {q′}} induced on {q} and
{q′}, respectively, are independent.

Then (i) ⇔ (ii) ⇒ (iii).

Proof. We write K for the knowledge structure, and P for the probability
measure on 2K. Let βq, ηq ∈ [0, 1[ be the response parameters. Since

Cov(Xq,Xq′) = E(XqXq′)− E(Xq)E(Xq′)

= P(Xq = 1,Xq′ = 1)− P(Xq = 1)P(Xq′ = 1), (11.31)

the equivalence of (i) and (ii) is clear. Developing the r.h.s. of Equation (11.31),
using Equations (11.5) and (11.6), we obtain

P(Kq ∩Kq′)(1− βq)(1− βq′) + P(Kq ∩Kq′)(1− βq)ηq′
+ P(Kq ∩Kq′)ηq(1− βq′) + P(Kq ∩Kq′)ηqηq′

−
(
P(Kq)(1− βq) + P(Kq)ηq

)(
P(Kq′)(1− βq′) + P(Kq′)ηq′

)
=
(
P(Kq ∩Kq′)− P(Kq)P(Kq′)

)
(1− βq)(1− βq′)

+
(
P(Kq ∩Kq′)− P(Kq)P(Kq′)

)
(1− βq)ηq′

+
(
P(Kq ∩Kq′)− P(Kq)P(Kq′)

)
ηq(1− βq′)

+
(
P(Kq ∩Kq′)− P(Kq)P(Kq′)

)
ηqηq′ . (11.32)

By definition, the projections {∅, {q}} and {∅, {q′}} are independent if
and only if for every state K of the parent, [K/{q}] and [K/{q′}] are inde-
pendent events, in other words if and only if

P(Kq ∩Kq′)− P(Kq)P(Kq′) = P(Kq ∩Kq′)− P(Kq)P(Kq′)

= P(Kq ∩Kq′)− P(Kq)P(Kq′) = P(Kq ∩Kq′)− P(Kq)P(Kq′) = 0.

Substituting in the r.h.s. of Equation (11.32), and noticing that the values
of the parameters can be chosen arbitrarily in the interval [0, 1[, the implica-
tion (ii) ⇒ (iii) follows.
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11.10 Original Sources and Related Works

Probabilistic concepts were introduced in knowledge space theory by Fal-
magne and Doignon (1988a,b) (see also Villano, Falmagne, Johannesen, and
Doignon, 1987; Falmagne, 1989a,b).

Several researchers have applied the basic local independence model to real
knowledge space data, in particular: Falmagne et al. (1990); Villano (1991);
Lakshminarayan (1995); Taagepera et al. (1997); Lakshminarayan and Gilson
(1998). Villano (1991)’s work deserves a special mention because of the sys-
tematic way he constructed a large knowledge space by testing successive
uniform extensions of smaller ones. The method of Cosyn and Thiéry (2000)
reviewed in Chapter 15, which relies in part on Villano’s techniques but also
applies a sophisticated type of QUERY algorithm to question the experts, has
been used successfully in the ALEKS system.

The Markov models described in Subsections 11.6.1 and 11.6.3 were pro-
posed by Falmagne (1994). Some empirical tests of these models are described
in Fries (1997).

All the Markov chain concepts used in this chapter are standard. For an
introduction to Markov chain theory, we have already referred the reader to
Feller (1968), Kemeny and Snell (1960), Parzen (1994), and Shyryayev (1960).

Problems

1. Modify the local independence assumption in such a manner that the
probability of a response pattern R, given a state K varies with the sub-
ject. You should obtain an explicit formula for the probability ρ(R) of
obtaining a response pattern R in that case.

2. Compute the number of degrees of freedom of the chi-square for the basic
probabilistic model, in the case of a 7 item test with open responses. What
would this number be in a multiple choice situation, in which 5 alternatives
are proposed for each question, and assuming that the options have been
designed so as to make all guessing probabilities equal to 1

5?

3. Generalize the simple learning model by assuming that the probability of
mastering an item may depend upon past events, in particular, upon the
last item mastered.

4. Suppose that the parent structure satisfies the simple learning model.
Does any projection also satisfies that model? More generally, which of
the models discussed in the chapter is preserved under projections?

5. Could a projection satisfy the simple learning model, while the parent
structure does not satisfy that model?
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6. Generalize Markov Chain Model 1, by assuming that subjects of the sam-
ple may have different learning step numbers. Specifically, assume that
the learning step has a negative binomial distribution, and derive the
predictions permitting a test of the model.

7. Develop Markov Chain Model 1 in order to predict the results of a sample
of subjects tested at two different times (cf. Remark 11.6.2(c)).

8. Modify the state probabilities of the knowledge structure of the stan-
dard example, in such a manner that the states ∅ ∈ H′ and ∅ ∈ H′′

are independent but the two projections themselves are not (cf. Exam-
ple 11.9.2(a)).

9. Consider the knowledge structure {∅, {a}, {b}, {a, b}} used in Example
11.9.2(b), in which the states probabilities were p(∅) = .05, p{a} = .15,
p{b} = .20, p{a, b} = .60. Prove that the two probabilistic projections
induced on {a} and {b} are independent, and thus form an independent
representation.

10. In the Example of Problem 9, the nomenclature forming the representation
was a classification (Definition 11.8.1). Is this condition necessary? Prove
your response.

11. If Υ = (Qi,Ki, pi)1≤i≤k is an independent representation of a probabilistic
knowledge structure (Q,K, p), then the projections form a nomenclature
and are independent in the sense of Definition 11.9.1. The latter condition
means that the traces of anyK ∈ K are independent. Does this imply that,
for any distinct states K,K ′ of K and with i 6= j, K ∩Qi and K ′ ∩Qj are
also independent?

12. Generalize the Simple Learning Model in the case of a knowledge structure
which is not (necessarily) well-graded (cf. 11.4.1).

13. Show by an example that a knowledge structure may have a collection Υ
of pairwise independent projections, without having Υ itself being inde-
pendent in the sense of Definition 11.9.1.

14. Find an expression for Cov(Xq,Xq′) when the knowledge structure is a
chain, and the parameters βq, βq′ , ηq, ηq′ vanish (cf. 11.9.1).

15. Develop the Markov Model 2 of 11.6.3 in the style used for the Markov
Model 1. In particular, what does the transition matrix look like?
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Stochastic Learning Paths*

The stochastic theory presented in this chapter is more ambitious than those
examined in Chapter 11. The description of the learning process is more com-
plete and takes place in real time, rather than in a sequence of discrete trials.
This theory also contains a provision for individual differences. Nevertheless,
its basic intuition is similar, in that any student progresses through some
learning path. As time passes, the student successively masters the items en-
countered along the learning path. The exposition of the theory given here
follows closely Falmagne (1993, 1996). As before, we shall illustrate the con-
cepts of the theory in the framework of an example. We star the title of this
chapter because its concepts and results are not used elsewhere in this book.

12.1 A Knowledge Structure in Euclidean Geometry

This empirical application is due to Lakshminarayan (1995), and was alluded
to in 1.1.3. It involves five problems in high school geometry, which are dis-
played in Figure 12.1. These five items were part of a test given to 959 un-
dergraduate students at the University of California, Irvine. There were two
consecutive applications of the test, separated by a short lecture recalling some
fundamental facts of Euclidean geometry. The problems in the two applica-
tions were pairwise equally informative but not identical. In the terminology
introduced in 1.1.1, this means that the problems in the second application
were different instances of the same five items. (For our use of the term ‘equally
informative’ in this context, see 2.1.5.) The analysis of the data1, for the five
items a, b, c, d, and e, resulted in the knowledge structure below, which is
represented by the graph of Figure 12.2.

L =
{
∅, {a},{b}, {a, b}, {a, d}, {b, c}, {a, b, c},

{a, b, d}, {b, c, d}, {a, b, c, d}, {a, b, c, d, e, }
}
. (12.1)

1 The details of the Lakshminarayan (1995) study are reported later in this chapter.

J.-C. Falmagne, J.-P. Doignon, Learning Spaces, 
DOI 10.1007/978-3-642-01039-2_12, © Springer-Verlag Berlin Heidelberg 2011 
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(a) In the figure above, what is the measure
of angle p? Give your answer in degrees.

(b) In the figure above, what is the
measure of angle y in degrees?

(c) In the figure above, line L is parallel
to line M. Angle x is 55 degrees. What
is the measure of angle y in degrees?

(d) In the triangle shown above, side AB
has the length of 3 inches, and side AC
has the length of 5 inches. Angle ABC is
90 degrees. What is the area of the 
triangle?

(e) In the above quadrilateral, side AB
= 1 inch. The angles are as marked in 
the figure. The angles marked X are
all equal to each other. What is the
perimeter of the figure ABCD?

L

M

Figure 12.1. The five geometry items in Lakshminarayan’s study.

12.2 Basic Concepts

The knowledge structure L in Equation (12.1) is a learning space with seven
gradations. In general, the theory presented here is suitable for knowledge
structures satisfying Axiom [L1] of a learning space2, but not necessarily [L2].
So, all the learning paths are gradations but closure under union may not
be satisfied. Students may differ from each other not only by the particular
gradation followed, but also by their ‘learning rate.’ We assume that, for a
given population of subjects, the learning rate is a random variable, which
will be denoted by L. A graphical illustration of a density function for this
random variable L is given at the upper left of Figure 12.2. Consider a student
equipped with a learning rate L = λ, and suppose that this student, for some
chance reasons, is engaged in the gradation

∅ ⊂ {b} ⊂ {b, c} ⊂ {a, b, c} ⊂ {a, b, c, d} ⊂ {a, b, c, d, e} (12.2)

which is marked by the string of red arrows starting from the empty set in
Figure 12.2.

2 Cf. 2.2.1 on page 26. These knowledge structures are thus finite.
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t
y

learning rate

{a}

{b}

{a,b}

{a,b,c}

{b,c}

{a,d}

{a,b,d}

{a,b,c,d}

{b,c,d}

λ

Figure 12.2. Indicated by the red arrows, the gradation followed in the learning
space L by a certain student equipped with the learning rate λ.

We also assume that, at the outset, this student is naive. Thus, the initial
state is the empty set ∅. Reaching the next state of that gradation requires
mastering the concepts associated with item b. This may or not be laborious,
depending on the learning rate of the student and the difficulty of the item.
In the theory expounded in this chapter, the time required to reach state {b}
is a random variable, the distribution of which may depend upon these two
factors: the difficulty of the item and the student’s learning rate, represented
here by the number λ. The item difficulty will be measured by a parameter
of the theory.

The next state encountered along the gradation in Equation (12.2) is {b, c}.
Again, the time required for a transition from state {b} to state {b, c} is a
random variable, with a distribution depending upon λ and the difficulty of
item c. And so on. If a test takes place, the student will respond according
to her current state. However, we do not assume that the responses to items
contained in the student’s current state will necessarily be correct. As in
Chapter 11, we suppose that careless errors and lucky guesses are possible.
The rule specifying the probabilities of both kinds of events will be the same
as before, namely, the rule defined by Equation (11.6). If a student is tested
n times, at times t1, . . . , tn, the n-tuple of observed patterns of responses
will depend upon the n knowledge states occupied at the times of testing.
As usual, we do not assume that the knowledge states directly observable.
However, from the axioms of the theory, explicit formulas can be derived for
the prediction of the joint probabilities of occurrence of all n-tuples of states.

A formal statement of the theory requires a few additional concepts.
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12.2.1 Definition. Consider a fixed, finite, well-graded knowledge structure
(Q,K). For any real number t ≥ 0, we denote by Kt the knowledge state at
time t; thus, Kt is a random variable taking its values in K. We write GK for
the collection of all gradations in K. We shall usually abbreviate GK as G when
no ambiguity can arise. Let K ⊂ K ′ ⊂ · · · ⊂ K ′′ be any chain of states. We
write G(K,K ′, . . . ,K ′′) for the subcollection of all gradations containing all
the states K,K ′, . . . ,K ′′. Obviously, G(∅) = G(Q) = G, and in the knowledge
structure (Q,L) specified by Equation (12.1) (cf. Figure 12.2), we have, with
obvious abbreviations,

G({a}, {a, b, c, d}) = {ν1, ν2, ν3},
ν1 = adbce , ν2 = abdce , ν3 = abcde.

The gradation taken by a subject will also be regarded as a random variable.
We write C = ν to signify that ν is the gradation followed by the student.
Thus, the random variable C takes its values in G. The existence of a prob-
ability distribution on the set of all gradations is a fairly general hypothesis.
It involves, as possible special cases, various mechanisms describing the gra-
dation followed by the subject as resulting from a succession of choices along
the way. We shall go back to this issue later in this chapter.

For convenience, the notation and all the concepts basic to this chapter
are recalled below.

12.2.2 Notation.

Q a finite, nonempty set, called the domain

K a well-graded knowledge structure on Q

Kt = K ∈ K the subject is in state K at time t ≥ 0

Rt = R ∈ 2Q R is the set of correct responses given by the

subject at time t ≥ 0

L = λ the learning rate of the subject is equal to λ ≥ 0

G the collection of all gradations

G(K,K ′, . . . ) the collection of all gradations containing K,K ′, . . .

C = ν ∈ G the gradation of the subject is ν.

12.2.3 General Axioms. We begin by formulating four axioms specifying
the general stochastic structure of the theory. Precise hypotheses concern-
ing the distributions of the random variables L and C and the conditional
probabilities of the response patterns, given the states, will be made in later
sections of this chapter. Each axiom is followed by a paraphrase in plain lan-
guage. These axioms define, up to some functional relations, the probability
measure associated with the triple

((Rt,Kt)t≥0,C,L).
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The selection of a subject in the population corresponds to a choice of values
L = λ and C = ν for the learning rate and the gradation of the subject,
respectively. In turn, these values specify a stochastic process

((Rt,Kt)t≥0, ν, λ)

describing the progress of the particular subject through the material, along
gradation ν.

[B] Beginning State. For all ν ∈ G and λ ∈ R+,

P(K0 = ∅ L = λ,C = ν) = 1.

With probability one, the initial state of the subject at time t = 0 is the
empty state, independently of the gradation and of the learning rate3.

[I] Independence of Gradation and Learning Rate. The random vari-
ables L and C are independent. That is, for all λ ∈ R+ and ν ∈ G,

P(L ≤ λ,C = ν) = P(L ≤ λ) · P(C = ν).

The gradation followed is independent of the learning rate.

[R] Response Rule. There is a function r : 2Q × K → [0, 1] such that4 for
all λ ∈ R+, ν ∈ G, n ∈ N, Rn ∈ 2Q, Kn ∈ K, tn > tn−1 > · · · > t1 ≥ 0,
and any event E determined only by(

(Rtn−1
, Ktn−1

), (Rtn−2
,Ktn−2

), . . . , (Rt1 ,Kt1)
)
,

we have

P(Rtn = R Ktn = K,E,L = λ,C = ν) = P(Rtn = R Ktn = K)

= r(R,K).

If the state at a given time is known, the probability of a response pattern
at that time only depends upon that state through the function r. It is
independent of the learning rate, the gradation, and any sequence of past
states and responses.

[L] Learning Rule. There is a function `e : K × K × R2 × G → [0, 1],
such that, for all λ ∈ R+, ν ∈ G, n ∈ N, Rn ∈ 2Q, Kn,Kn+1 ∈ K,
tn+1 > tn > · · · > t1 ≥ 0, and any event E determined only by(

(Rtn−1
,Ktn−1

), (Rtn−2
,Ktn−2

), . . . , (Rt1 ,Kt1)
)
,

3 As L is a random variable taking its values in R+, the event L = λ may have
measure 0. As usual, the conditional probability in Axiom [B] and in other similar
expressions in this chapter is defined by a limiting operation (cf. Parzen, 1994,
p. 335, for example).

4 We depart here from our usual convention of denoting by n the size |K| of K.
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we have

P(Ktn+1 = Kn+1 Ktn = Kn,Rtn = R,E,L = λ,C = ν)

= P(Ktn+1 = Kn+1 Ktn = Kn,L = λ,C = ν)

= `e (Kn,Kn+1, tn+1 − tn, λ, ν).

Moreover, the function `e is assumed to satisfy the following two condi-
tions: For any K,K ′ ∈ K, ν, ν′ ∈ G, δ > 0 and any λ ∈ R+,

[LR1] `e (K,K ′, δ, λ, ν) = 0 if ν /∈ G(K,K ′);

[LR2] `e (K,K ′, δ, λ, ν) = `e (K,K ′, δ, λ, ν′) if ν, ν′ ∈ G(K,K ′).

The probability of a state at a given time only depends upon the last state
recorded, the time elapsed, the learning rate and the gradation. It does
not depend upon previous states and responses. This probability is the
same for all gradations containing both the last recorded state and the
new state, and vanishes otherwise.

12.2.4 Definition. A triple S = ((Kt,Rt)t≥0,C,L) satisfying the four Ax-
ioms [B], [I], [R] and [L] is a system of stochastic learning paths. The functions
r and `e of Axioms [R] and [L] will be called the response function and the
learning function of the system S, respectively.

Of special interest is another condition on the learning function `e which
essentially states that there is no forgetting. When `e also satisfies

[LR3] `e (K,K ′, δ, λ, ν) = 0 if K * K ′,

for all K,K ′ ∈ K, ν ∈ G, δ > 0 and λ ∈ R, we shall say that S is progressive.
Only progressive systems of stochastic learning paths will be considered in
this chapter (see Problem 1, however).

12.2.5 Remarks. a) One may object to Axiom [B] that when a subject is
tested, the time elapsed since the beginning of learning—the index t in Rt and
Kt—is not always known exactly. We may perhaps assume, for example, that
the learning of mathematics begins roughly at age 2 or 3, but this may not
be precise enough. In some situations, it may be possible to consider at least
some of these indexed times as parameters to be estimated from the data.

b) Axiom [I], which concerns the independence of the learning rate and
the learning path, was difficult to avoid—however unrealistic it may perhaps
appear. Its strong appeal is that it renders the derivations relatively straight-
forward. For the time being, there does not seem to be any obvious alternative.
Our hope is that the predictions of the model are robust with respect to that
assumption.

c) Axiom [R] seems reasonable enough. This axiom will be specialized in
Subsection 12.4.1 as the local independence assumption already encountered
in Chapter 11 (see 11.1.2).
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d) On the other hand, the assumptions embedded in [L] require a thorough
examination. To begin with, one might argue that a two or k-dimensional
version of the learning rate may be required in some cases. The number λ in
the argument of the function `e would then be replaced by a real vector, the
components of which would measure different aspect of the learning process.
The theory could be elaborated along such lines if the need arises.

Also, one might be tempted to formulate, instead of Axiom [L], the much
stronger Markovian condition formalized by the equation

P(Ktn+1
=Kn+1 Ktn =Kn,Rtn =Rn,E) = P(Ktn+1

=Kn+1 Ktn =Kn),

with E as in Axiom [L]. Thus, the probability of a state at time tn+1 would
only depend upon the last recorded state, and possibly, the time elapsed since
that observation. This assumption is inappropriate because the more detailed
history embedded in the event E in the l.h.s. of the above equation may provide
information on the learning rate and the learning path, which in turn, may
modify the probabilities of the states at time tn+1. In Problem 2, we ask the
reader to provide a numerical example falsifying this equation, based on the
domain Q and the knowledge structure L of Equation (12.1) and Figure 12.2.

Much more can be said about Axiom [L]. It turns out that, in the frame-
work of the other Axioms [B], [I] and [R], this axiom considerably restricts the
distributional form of the latencies (see Remark 12.5.1). We postpone further
discussion of Axiom [L] to derive a few results which only depend upon Ax-
ioms [B], [I], [R] and [L]. In other words, no assumptions are made regarding
the functional form of r or `e.

12.3 General Results

12.3.1 Theorem. For all integer n > 0, all real numbers tn > · · · > t1 ≥ 0,
and any event E determined only by (Rtn−1 ,Rtn−2 , . . . ,Rt1), we have

P(Ktn = Kn Ktn−1 =Kn−1, . . . ,Kt1 = K1,E)

= P(Ktn = Kn Ktn−1 = Kn−1, . . . ,Kt1 = K1).

We postpone the proof for a moment (see 12.3.4).

12.3.2 Convention. To lighten the notation, we occasionally use the abbre-
viations:

κn = ∩ni=1[Kti = Ki],

ρn = ∩ni=1[Rti = Ri].

Notice that the choice of the times tn > · · · > t1 ≥ 0 is implicit in this
notation. We also write pν for P(C = ν). Our proof of Theorem 12.3.1 requires
a preparatory lemma.
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12.3.3 Lemma. For any real number λ and any learning path ν, and with E

only depending on ρn, we have

P(E κn,L = λ,C = ν) = P(E κn).

Proof. By induction, using Axioms [R] and [L] in alternation (Problem 11).

12.3.4 Proof of Theorem 13.3.1. By Lemma 12.3.3, we have for any pos-
itive integer n,

P(κn,E L = λ,C = ν)

P(κn,E)
=

P(E κn,L = λ,C = ν)P(κn L = λ,C = ν)

P(E κn)P(κn)

=
P(E κn)P(κn L = λ,C = ν)

P(E κn)P(κn)

=
P(κn L = λ,C = ν)

P(κn)
= g(κn, λ, ν)

the last equality defining the function g. With pν = P(C = ν), we successively
have

P(Ktn = Kn κn−1,E) =

∫ ∞
−∞

∑
ν∈G

P(Ktn = Kn κn−1,E,L = λ,C = ν)

× P(κn−1,E L = λ,C = ν)

P(κn−1,E)
pν dP(L ≤ λ)

=

∫ ∞
−∞

∑
ν∈G

P(Ktn = Kn κn−1,L = λ,C = ν) g(κn−1, λ, ν) pν dP(L ≤ λ)

= P(Ktn = Kn κn−1).

As noted earlier, the results concerning the observable patterns of re-
sponses are our prime concern. However, an examination of Axiom [R] suggests
that these results could be derived from a study of the process (Kt,L,C)t≥0.
The next theorem makes this idea precise.

12.3.5 Theorem. For any positive integer n, any response patternsRi ∈ 2Q,
1 ≤ i ≤ n, and any real numbers tn > tn−1 > · · · > t1 ≥ 0, we have

P (∩ni=1[Rti = Ri]) =
∑
K1∈K

· · ·
∑
Kn∈K

(
n∏
i=1

r(Ri,Ki)

)
P (∩ni=1[Kti = Ki]) .
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Proof. We have

P
(
∩ni=1 [Rti = Ri]

)
= P(ρn) =

∑
(κn)

P(ρn, κn). (12.3)

Developing the general term in the summation, we obtain successively,
using Axiom [R] and Theorem 12.3.1,

P(ρn, κn) =

P(Rtn = Rn ρn−1, κn)P(Ktn = Kn ρn−1, κn−1)

×P(Rtn−1 = Rn−1 ρn−2, κn−1)P(Ktn−1 = Kn−1 ρn−2, κn−2)× · · ·
×P(Rt2 = R2 Kt1 = K1,Rt1 = R1,Kt2 = K2)

×P(Kt2 = K2 Kt1 = K1,Rt1 = R1)

×P(Rt1 = R1 Kt1 = K1)P(Kt1 = K1)

=
(
r(Rn,Kn)r(Rn−1,Kn−1) · · · r(R1,K1)

)
P(Ktn = Kn κn−1)

×P(Ktn−1
= Kn−1 κn−2) · · · P(Kt2 = K2 Kt1 = K1)P(Kt1 = K1)

=

(
n∏
i=1

r(Ri,Ki)

)
P(κn). (12.4)

The result follows from (12.3) and (12.4).

Thus, the joint probabilities of the response patterns can be obtained from
the joint probabilities of the states, and from the conditional probabilities cap-
tured by the function r. We now turn to a study of the process (Kt,L,C)t≥0.

12.3.6 Theorem. For all real numbers λ, t > 0, and all ν ∈ G,

P(Kt = K L = λ,C = ν) = `e (∅,K, t, λ, ν).

Proof. By Axiom [B], P(K0 = K ′ L = λ,C = ν) = 0 for any K ′ 6= ∅.
Accordingly, we obtain:

P(Kt = K L = λ,C = ν)

=
∑
K′∈K

P(Kt = K K0 = K ′,L = λ,C = ν)P(K0 = K ′ L = λ,C = ν)

= P(Kt = K K0 = ∅,L = λ,C = ν)

= `e (∅,K, t, λ, ν).

12.3.7 Theorem. For all integers n > 0 and times tn > · · · > t1 > t0 = 0,
and with K0 = ∅,

P(Kt1 = K1, . . . ,Ktn = Kn)

=

∫ ∞
−∞

∑
ν∈G

(
n−1∏
i=0

`e (Ki,Ki+1, ti+1 − ti, λ, ν)

)
pν dP(L ≤ λ).
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Proof. With the notation κn as in Convention 12.3.2, we have

P(κn) =

∫ ∞
−∞

∑
ν∈G

P(κn L = λ,C = ν) pν dP(L ≤ λ). (12.5)

Using Axiom [L] and Theorem 12.3.6,

P(κn L = λ,C = ν)

=P(Ktn =Ktn κn−1,L = λ,C = ν)P(Ktn−1 =Ktn−1 κn−2,L = λ,C = ν)

· · ·P(Kt2 =K2 Kt1 =K1,L = λ,C = ν)P(Kt1 =K1 L = λ,C = ν)

=
n−1∏
i=0

`e (Ki,Ki+1, ti+1 − ti, λ, ν) .

The result obtains after substituting in (12.5).

12.4 Assumptions on Distributions

This theory is of limited practical use without making specific hypotheses
concerning the distributions of the random variable L measuring the learning
rate, and the random variables implicit in the expression of the learning func-
tion `e of Axiom [L], which governs the time required to master the items.
We also need to specify the response function r of Axiom [R], representing
the conditional probabilities of the response patterns, given the states. We
formulate here two axioms specifying the response function and the distri-
bution of the learning rate. The distributions of the learning latencies are
discussed in the next section. It is fair to say that our choice of axioms result
from a compromise between realism and applicability. These axioms are by
no means the only feasible ones. Different compromises, still in the framework
of Axioms [B], [I], [R] and [L], could be adopted.

12.4.1 Axioms on and .r L The first axiom embodies the standard “local
independence” condition of psychometric theory (see Lord and Novick, 1974).
It has been used in Chapter 11 in the guise of Equation (11.6).

[N] Local Independence. For each item q in Q, there is a parameter βq,
0 ≤ βq < 1, representing the probability of a careless error in responding
to this item if it is present in the current knowledge state. There is also a
collection of parameters ηq representing the probability of a lucky guess5

for a response to an item q ∈ Q not present in the current learning state.

5 We recall that the terms “lucky guess” and “careless error” have no cognitive
interpretation. They always refer to a current knowledge state. By convention, a
correct response to an item not belonging to the knowledge state of reference is
a lucky guess, and an incorrect response to an item belonging to that state is a
careless error.
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These parameters specify the function r of Axiom [R], that is, the proba-
bility of a response set R, conditional to a knowledge state K, according
to the formula:

r(R,K) =

( ∏
q∈K\R

βq

)( ∏
q∈K∩R

(1− βq)
)( ∏

q∈R\K

ηq

)( ∏
q∈R∪K

(1− ηq)
)
,

in which the complement R ∪K in the last factor is taken with respect
to the domain Q.

[A] Learning Ability. The random variable L measuring the learning rate
is continuous, with a density function f , and a mass concentrated on the
positive reals. Specifically, it is assumed that L is distributed gamma, with
parameters α > 0 and ξ > 0; that is:

f(λ) =


ξα

Γ (α)
λα−1e−ξλ for λ > 0,

0 for λ ≤ 0.
(12.6)

Thus, E(L) = α
ξ and V ar(L) = α

ξ2 (where ‘E’ denotes, as usual, the

expectation of the random variable L).

12.5 The Learning Latencies

The four axioms [B], [R], [I] and [L] put severe constraints on the functional
form of the learning latencies. For example, we may not simply assume that
these latencies are distributed gamma6. We show below by a functional equa-
tion argument that the latency distributions must be exponential.

12.5.1 Remarks. Let us write Tq,K,λ for the random variable measuring the
time required to master some new item q, for a subject with a learning rate
λ, this subject being in some state K from which item q is learnable, that
is, K ∪ {q} is a state in the structure. More specifically, for any gradation ν
containing both K and K ∪ {q} and any τ > 0, we infer from Axiom [L] that

P(Tq,K,λ ≤ τ) = `e (K,K ∪ {q}, τ, λ, ν) ,

or equivalently
P(Tq,K,λ > τ) = `e (K,K, τ, λ, ν). (12.7)

For any t, δ, δ′, λ > 0, any state K in K, and any gradation ν containing both
K and K ∪ {q}, we have

6 This assumption was made by Falmagne (1993). As argued by Stern and Laksh-
minarayan (1995), it is incorrect. The history of this issue is summarized in the
last section of this chapter.
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P(Kt+δ+δ′ = K Kt = K,L = λ,C = ν)

= P(Kt+δ+δ′ = K Kt+δ = K,Kt = K,L = λ,C = ν)

× P(Kt+δ = K Kt = K,L = λ,C = ν)

+ P(Kt+δ+δ′ = K Kt+δ 6= K,Kt = K,L = λ,C = ν)

× P(Kt+δ 6= K Kt = K,L = λ,C = ν).

Because we assume that the system of stochastic learning path is progres-
sive (see Definition 12.2.4), the second term in the r.h.s. vanishes and the
above equation simplifies into

P(Kt+δ+δ′ = K Kt = K,L = λ,C = ν)

= P(Kt+δ+δ′ = K Kt+δ = K,L = λ,C = ν)

× P(Kt+δ = K Kt = K,L = λ,C = ν),

that is, in terms of the function `e,

`e (K,K, δ + δ′, λ, ν) = `e (K,K, δ′, λ, ν) `e (K,K, δ, λ, ν).

In turn, this can be rewritten as

P(Tq,K,λ > δ + δ′) = P(Tq,K,λ > δ′)P(Tq,K,λ > δ). (12.8)

Fixing q, K and λ and writing v(τ) = P(Tq,K,λ > τ) for τ > 0, we get

v(δ + δ′) = v(δ′)v(δ) (12.9)

for any δ, δ′ > 0. The function v is defined on ]0,∞[ and decreasing (because
1− v is a distribution function). Standard functional equations results apply
(cf. Aczél, 1966), yielding for any τ > 0 and some ϑ > 0

v(τ) = e−ϑτ .

The constant ϑ may of course depend upon q, K and λ. We obtain

P(Tq,K,λ ≤ τ) = 1− e−ϑ(q,K,λ)τ . (12.10)

Note that E(Tq,K,λ) = 1/ϑ(q,K, λ).

The above argument includes the possibility that the distribution of the
learning latencies may depend on the state through the parameters ϑ. For the
rest of this section, however, we shall assume that ϑ(q,K, λ) does not depend
on K for all states K such that q is learnable from K. In other words, K can
be dropped in Equations (12.8) and (12.10). We discuss the validity of this
assumption in a later section of this chapter; see 12.7.1.
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12.5.2 Remark. It makes sense to require that a subject having twice the
learning rate µ of some other subject would master, on the average, a given
item in half the time. Thus, we want to have:

E(Tq,2µ) =
1

ϑ(q, 2µ)
=
E(Tq,µ)

2
=

1

2ϑ(q, µ)
.

Generalizing this observation leads to

ϑ(q, λµ)

λ
= ϑ(q, µ) (12.11)

for all λ > 0. Setting µ = 1 and γq = 1/ϑ(q, 1) in Equation (12.11), we obtain:
ϑ(q, λ) = λ/γq. The distribution function of the learning latencies is thus

P(Tq,λ ≤ τ) = 1− e−(λ/γq)τ , (12.12)

with E(Tq,λ) = γq/λ. The form of this expectation is appealing. It entails that
the difficulties of the items encountered along a learning path are additive in
the following sense. Suppose that a subject with learning rate λ successively
solves items q1, . . . , qn. The total time to master all of these items has expec-
tation

E(Tq1,λ + · · ·+ Tqn,λ) =

∑n
i=1 γqi
λ

. (12.13)

In words: the average time required to solve successively a number of items is
the ratio of the sum of their difficulties, to the learning rate of the subject.

At the beginning of this section, we stated that the four Axioms [B], [I],
[R] and [L] implicitly specified the functional form of the learning latencies. In
fact, for a variety of reasons, we cannot simply derive the form of the latency
distributions as a theorem. For example, we could not deduce from the stated
axioms that the random variables Tq,λ do not depend upon K and that Equa-
tion (12.12) holds for Tq,K,λ = Tq,λ, which is what we want and will make the
theory manageable (in view of Equation (12.13)). Accordingly, we formulate
below a new axiom specifying the form of these latency distributions. The
following notation will be instrumental.

12.5.3 Definition. Let ν be a gradation containing a state K 6= Q. We write
Kν for the state immediately following state K in gradation ν. We thus have
K ⊂ Kν ∈ ν with |Kν \K| = 1, and for any S ∈ ν with K ⊂ S, we must have
Kν ⊆ S.

[T] Learning Times. We assume that, for a subject with learning rate λ, the
time required for the mastery of item q (this item being accessible from
that subject’s current state) is a random variable Tq,λ, which has an expo-
nential distribution with parameter λ/γq, where γq > 0 is an index mea-
suring the difficulty of item q. Thus, E(Tq,λ) =

γq
λ and V ar(Tq,λ) = (

γq
λ )2.

All these random variables (for all q and λ) are assumed to be indepen-
dent. The items are mastered successively. This means that the total time
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to master successively items q, q′, . . . encountered along some gradation ν
is the sum Tq,λ+Tq′,λ+· · · of exponentially distributed random variables,
with parameters λ/γq, λ/γq′ , . . . Formally, for any positive real numbers
δ and λ, any learning path ν ∈ G, and any two states K,K ′ ∈ ν with
K ⊆ K ′, we have

`e (K,K ′, δ, λ, ν)

=



P(Tq,λ > δ) with {q} = Kν \K if K = K ′ 6= Q,

P(
∑
q∈K′\K Tq,λ ≤ δ)− P(

∑
q∈K′ν\K Tq,λ ≤ δ) if K ⊂ K ′ 6= Q,

P(
∑
q∈K′\K Tq,λ ≤ δ) if K ⊂ K ′ = Q,

1 if K = K ′ = Q,

0 in all other cases.

Thus, the total time required to solve all the items in a state K is the ran-
dom variable

∑
q∈K Tq,λ which is distributed as a sum of |K| independent

exponential random variables.

12.6 Empirical Predictions

In this section and the next one, we suppose that we have a system of stochas-
tic learning paths S = ((Kt,Rt)t≥0,C,L) with the distributions satisfying the
three Axioms [N], [A] and [T]. The predictions given below were derived by
Stern and Lakshminarayan (1995) and Lakshminarayan (1995). We begin with
a well-known result (cf. Adke and Manshunath, 1984).

12.6.1 Theorem. Let T1,T2, . . . ,Tn be jointly distributed independent ex-
ponential random variables with parameters λ1, . . . , λn respectively, and sup-
pose that λi 6= λj for i 6= j. Then the density function hT and the associated
distribution function HT of the sum T = T1 + · · · + Tn are given, for t ≥ 0
and δ ≥ 0, by

hT(t) =

( n∏
i=1

λi

) n∑
j=1

e−λjt
( n∏
k=1
k 6=j

(λk − λj)
)−1

, (12.14)

HT(δ) =

∫ δ

0

hT(t) dt =

( n∏
i=1

λi

) n∑
j=1

1− e−λjδ
λj
∏n

k=1
k 6=j

(λk − λj)
dt. (12.15)

Thus, the results in the r.h.s. of (12.14) and (12.15) do not depend upon
the order assigned by the index i. For example, with n = 3, we get



12.6 Empirical Predictions 229

hT(t) = λ1λ2λ3

(
e−λ1t

(λ2 − λ1)(λ3 − λ1)
+

e−λ2t

(λ1 − λ2)(λ3 − λ2)
+

e−λ3t

(λ1 − λ3)(λ2 − λ3)

)
. (12.16)

Since none of the above references contains a proof, we give one below.

Proof. The MGF (moment generating function) MTi(ϑ) of an exponential
random variable Ti with parameter λi is given by MTi(ϑ) = λi(λi−ϑ)−1. Ac-
cordingly, the MGF of the sum of n independent exponential random variables
Ti with parameter λi, 1 ≤ i ≤ n, is

MT(ϑ) =
n∏
i=1

λi
λi − ϑ

. (12.17)

The proof proceeds by showing that the MGF of the random variable with
the density function specified by Equation (12.14) is that given by (12.17).
The result follows from the fact that the MGF of a random variable uniquely
determines its distribution. In passing, this would establish that the r.h.s.’s
of (12.14) and (12.15) do not depend upon the order assigned by the index i.
Multiplying by eϑt in both sides of (12.14) and integrating from 0 to∞ over t
(assuming that ϑ < λj for all indices j) yields

E(eϑT) =

( n∏
i=1

λi

) n∑
j=1

(
(λj − ϑ)

n∏
k=1
k 6=j

(λk − λj)
)−1

=

( n∏
i=1

λi
λi − ϑ

)
×D

with (see Problem 4)

D =

∑n
j=1(−1)n−j

[(∏
i6=j(λi − ϑ)

)(∏
k=1
k 6=j

(λk − λl)
)]

∏
i<j(λi − λj)

. (12.18)

It suffices to show that D = 1 for all values of λi, 1 ≤ i ≤ n satisfying the
conditions. The numerator in Equation (12.18) is a polynomial in ϑ of degree
n− 1. For i = 1, 2, . . . , n, it is easy to check that the value of this polynomial
evaluated at ϑ = λi is equal to the denominator of (12.18) (see Problem 5).
Thus D = 1 for all values of ϑ, which completes the proof of Equation (12.14).
Equation (12.15) follows easily.

A similar result can be obtained in the case where some of the λi’s have
identical values. We shall not treat this case here.

12.6.2 Convention. For the remainder of this section, we suppose that all
the difficulty parameters γq associated with the items have different values.
Accordingly, the parameters λ/γq of the exponential learning latencies have
also different values.
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12.6.3 Definition. For any S ⊆ Q and λ > 0, we denote by gS,λ the density
function of the sum TS,λ =

∑
q∈S Tq,λ, where each Tq,λ is an exponential

random variable with parameter γq/λ and the random variables Tq,λ are
pairwise independent. We also denote by GS,λ the corresponding distribution
function. Thus, gS,λ and GS,λ are specified by Equations (12.14) and (12.15)
up to the values of λ and the γq’s. This notation is justified because any
permutation of the index values in the r.h.s. of Equation (12.14) yield the
same density function, and hence the same distribution function.

We will use Theorem 12.6.1 to obtain an explicit expression for the learning
function `e in terms of the exponential distributions. The next theorem is a
restatement of Axiom [T] following from Theorem 12.6.1 and Definition 12.6.3.

12.6.4 Theorem. For any positive real numbers δ and λ, any learning path
ν ∈ G, and any two states K,K ′ ∈ ν, we have

`e (K,K ′, δ, λ, ν) =



e
− λ
γq
δ

with {q} = Kν \K if K = K ′ 6= Q,

GK′\K,λ(δ)−GK′ν\K,λ(δ) if K ⊂ K ′ 6= Q,

GK′\K,λ(δ) if K ⊂ K ′ = Q,

1 if K = K ′ = Q,

0 in all other cases.

We are now equipped to derive explicit predictions for the joint probabil-
ities of the states occurring at successive times. The next theorem contains
one example. As a convention, we set G∅,λ(δ) = 1 and GQν\S,λ(δ) = 0. Notice
that GS,L(δ) is a random variable, with expectation

E [GS,L(δ)] =

∫ ∞
0

GS,λ(δ)f(λ)dλ,

where f is the gamma density function defined by (12.6) in Axiom [A].

12.6.5 Theorem. For all integers n > 0, all states K1 ⊆ · · · ⊆ Kn, and all
real numbers tn > · · · > t1 ≥ 0, we have

P(Kt1 = K1, . . . ,Ktn = Kn)

=
∑
ν

pν

{∫ ∞
0

n−1∏
i=0

[
GKi+1\Ki,λ(ti+1 − ti)−GKν

i+1\Ki,λ(ti+1 − ti)
]
f(λ)dλ

}

=
∑
ν

pν E

{
n−1∏
i=0

[
GKi+1\Ki,L(ti+1 − ti)−GKν

i+1\Ki,L(ti+1 − ti)
]}

,

with t0 = 0, K0 = ∅ and the sum extending over all ν ∈ G(K1, . . . ,Kn).
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The predictions for the Case n = 2 are relevant to the application described
in Section 12.10, which is due to Lakshminarayan (1995). We have clearly:

12.6.6 Theorem. For any pair of response patterns (R2, R1) ∈ 2Q × 2Q,
and any real numbers t2 > t1 ≥ 0,

P(Rt1 = R1,Rt2 = R2)

=
∑
K1∈K

∑
K2∈K

r(R1,K1)r(R2,K2)P(Kt1 = K1,Kt2 = K2) (12.19)

with r(R1,K1) and r(R2,K2) specified by Axiom [N] in terms of the param-
eters βq and ηq, and P(Kt1 = K1,Kt2 = K2) as in Theorem 12.6.5.

An explicit expression of the joint probabilities P(Rt1 = R1,Rt2 = R2)
is now easy to obtain. To begin with, we can replace the values r(Ri,Ki) of
the response function by their expressions in terms of the probabilities of the
careless errors and of the lucky guesses given by Axiom [N]. Next, the values
of the joint probabilities of the state P(Kt1 = K1,Kt2 = K2) in terms of the
distributions of the learning rate and the learning latencies can be obtained
by routine integration via Axioms [A] and Theorems 12.6.6, 12.6.1, 12.6.4 and
12.6.5. We shall not spell out these results here (see Lakshminarayan, 1995,
for details).

12.7 Limitations of this Theory

The assumption that the time required to master some item q does not depend
upon the current state K—provided that item q can be learned from K—was
made for the sake of simplicity, but is not immune from criticisms. One can
easily imagine situations in which it might fail. Intuitively, if an item q can be
learned from both K and K ′, a student in state K may conceivably be better
prepared for the learning of q than a student in state K ′. The argument in
the discussion and the example below makes this idea concrete7.

12.7.1 Remarks. We consider a knowledge space K which is a projection
of some large, idealized knowledge structure K̊ containing all the items in a
given field of information, with domain Q̊. Let us denote by Q̊ the surmise
relation of K̊ (cf. Definition 3.7.1); thus,

q′Q̊q ⇐⇒ (∀K ∈ K̊ : q ∈ K ⇒ q′ ∈ K).

7 This argument was suggested by Lakshminarayan (personal communication; see
also Stern and Lakshminarayan, 1995). The details are as in Falmagne (1996).
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We also define, for any q in Q̊ and any subset S of Q̊,

Q̊−1(q) = {r ∈ Q̊ rQ̊q}
Q̊−1(S) = {r ∈ Q̊ rQ̊q, for some q ∈ S} = ∪

q∈S Q̊
−1(q).

Consider a state K in K and suppose that items a and b can be learned
from K in the sense that both a and b are in the outer fringe of K in K.
Thus, both K ∪ {a} and K ∪ {b} are states of K. Since K is a knowledge
space, K ∪ {a, b} is also a state of K. This means that item a, for example,
can be learned from either state K or state K∪{b}. It makes sense to suppose
that the difficulty of mastering a from state K must depend on the items from
Q̊\K that must be mastered before mastering a; that is, it depends on the set

S(a,K) = Q̊−1(a) \ Q̊−1(K).

Similarly, the difficulty of mastering item a from the state K ∪ {b} depends
on the set

S(a,K ∪ {b}) = Q̊−1(a) \ Q̊−1(K ∪ {b}).
The assumption that the difficulty of an item does not depend upon the

state of the subject leads one to require that S(a,K) = S(a,K ∪{b}). In fact,
we have by definition S(a,K ∪ {b}) ⊆ S(a,K) but the equality holds only in
special circumstances. Indeed, some manipulation yields (cf. Problem 6):

S(a,K) \ S(a,K ∪ {b}) = Q̊−1(a) ∩ Q̊−1(K) ∩ Q̊−1(K ∪ {b}).

Supposing that the intersection in the r.h.s. is empty means that there is no
item q in Q̊ preceding both a and b, and not preceding at least one item in K.
Such an assumption does not hold for general knowledge structures. We give
a counterexample below.

12.7.2 Example. Consider the knowledge space

K̊ =
{
∅, {c}, {d}, {c, d}, {a, c, d}, {b, c, d}, {a, b, c, d}}.

Thus Q̊ = {a, b, c, d}. The projection of K̊ on Q = {a, b, c} is

K =
{
∅, {c}, {a, c}, {b, c}, {a, b, c}}.

If we take K = {c} ∈ K, we get

Q̊−1(a) = {a, c, d}, Q̊−1(K) = {c},
Q̊−1(K) = {a, b, d}, Q̊−1(K ∪ {b}) = {b, c, d}

with
Q̊−1(a) ∩ Q̊−1(K) ∩ Q̊−1(K ∪ {b}) = {d}.
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A cure is easy but costly. As argued earlier, we can replace all the difficulty
parameters γq by parameters γq,K explicitly depending on the current state
K of the subject. Less prohibitive solutions would be preferable, of course. In
practice, it may turn out that the dependence of the difficulty of mastering
some item q on the state from which q is accessed, while theoretically jus-
tified, is in fact mild. The reason could either be that the estimates of the
parameters γq,K and γq,K′ do not differ much, or that this dependence only
affects a small proportion of the states and items. This question was investi-
gated empirically by Lakshminarayan (1995) who showed that a model with
exponentially distributed learning latencies and with difficulty parameters γq
that did not depend on the state was able to fit the data quite well.

In any event, our discussion raises the following problem: Under wich
conditions on the knowledge structure (Q̊, K̊) are all the set differences
S(a,K) \ S(a,K ∪ {b}) empty, for all substructures (Q,K)? It is clear that

a sufficient condition is that K̊ is a chain. This condition is not necessary,
however. We leave this question as one of our open problems (see 18.4.2).

The above discussion concerning a possible lack of invariance of the diffi-
culty parameters was organized around the concept of a projection (Q,K) of

a parent structure (Q̊, K̊). In short, it was argued that the difficulty of acquir-
ing a new item a accessible from two states K and K ∪ {b} in K, could differ

because the implicit paths in K̊ leading from K to K ∪ {a} and from K ∪ {b}
to K ∪{a, b} could required the mastery of different items in Q̊\Q. The same
type of argument can be used to show that, from the standpoint of the learning
latencies, it cannot be the case that the axioms of the model holds for both K

and K̊. Specifically, if the learning latencies are exponentially distributed in a
model assumed to hold for the parent knowledge structure (Q̊, K̊), then these
latencies cannot, in general, be exponentially distributed for the substructure
(Q,K). Rather, they have to be sums of exponential random variables, or
even mixtures of such sums. Consequently, because the exponential form is
necessary, the model cannot in principle hold for (Q,K). For a more detailed
discussion on this point, see Stern and Lakshminarayan (1995).

12.8 Simplifying Assumptions

Another type of objection that may be raised against this theory is that the
number of gradations may be very large. Because a probability is attached to
each gradation, the number of parameters to be estimated from the data may
be prohibitive. However, some fairly natural simplifying assumptions can be
made which would result in a substantial decrease in the number of parameters
attached to the gradations. We discuss an example.
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12.8.1 Markovian learning paths. Suppose that the probability of a gra-
dation

∅ ⊂ {a} ⊂ {a, b} ⊂ {a, b, c} ⊂ {a, b, c, d} ⊂ Q (12.20)

in some well-graded knowledge structure with domain Q = {a, b, c, d, e} can be
obtained by multiplying the successive transition probabilities from state to
state along the gradation. Let us denote by pK,K+{q} the condition probability
of a transition from a state K to state K+{q}, with K a non maximal state8.
In the notation of 12.2.2 for the subsets of gradations, we have thus

pK,K+{q} = P
(
C ∈ G(K + {q})|C ∈ G(K)

)
=

P
(
C ∈ G(K, (K + {q}

)
P
(
C ∈ G(K)

) .

Our simplifying assumption is that the probability of the gradation in (12.20)
is given by the product

p∅,{a} · p{a},{a,b} · p{a,b},{a,b,c} · p{a,b,c},{a,b,c,d}.

(Note that the conditional probability of a transition from state {a, b, c, d}
into state Q is equal to one.)

Let us generalize this example. We recall that, for any non maximal state
K in gradation ν, Kν stands for the state immediately following state K in ν.
We now extend this notation. For any nonempty state K in gradation ν, we
write νK for the state immediately preceding state K in ν.

[MLP] Markovian Assumption on the Learning Paths. For all ν ∈ G,
we have:

P(C = ν) = p∅,∅ν · p∅ν ,(∅ν)ν · . . . · pνQ,Q,
some of which may be equal to 1.

For instance, we must have pνQ,Q = 1, for all learning paths ν.

It is our experience that, for large typical well-graded knowledge struc-
tures, this assumption will dramatically reduce the number of parameters in
the model.

Clearly, more extreme simplifying assumptions can be tested. We could
assume, for instance, that pK,Kν only depends upon Kν \K. In the case of a
well-graded knowledge structure, this would reduce the number of transition
probabilities to at most |Q|.

8 For the gradation defined by (12.20), p∅,{a} is thus the conditional probability
that {a} is first state visited after the initial empty state.
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12.9 Remarks on Application and Use of the Theory

Suitable data for this theory consist in the frequencies of n-tuples of response
patterns R1, . . . , Ri, . . . , Rn, observed at times t1 < . . . < ti < · · · < tn. Thus,
each subject is tested n times with the full set Q of problems, and Ri denotes
the subset of Q containing all the correct responses given by the subject at
time ti. Let us consider the case n = 2. Thus, a sample of subjects has been
selected, and these subjects have been tested twice, at times t and t+ δ. We
denote by N(R,R′), with R,R′ ⊆ Q, the number of subjects having produced
the two patterns of responses R and R′ at times t and t+ δ.

12.9.1 A maximum likelihood procedure. The parameters may be esti-
mated by maximizing the loglikelihood function∑

R,R′⊆Q

N(R,R′) logP(Rt = R,Rt+δ = R′) (12.21)

in terms of the various parameters of the theory, namely, the response param-
eters βq and ηq, the parameters α and ξ of the distribution of the learning
rates, the item difficulty parameters γq, and the probabilities pν of the gra-
dations. In some cases, it is also possible to consider the times t and t+ δ as
parameters. For example, the time t elapsed since the beginning of learning
may be difficult to assess accurately. Applying a theory of such a complexity
raises a number of issues, which we now address.

12.9.2 Remarks. a) To begin with, some readers may cringe at this plethora
of parameters, and wonder whether an application of this theory is a realistic
prospect. Actually, as indicated earlier in this chapter, the theory has been
successfully applied to several sets of real data (see Arasasingham, Taagepera,
Potter, and Lonjers, 2004; Arasasingham, Taagepera, Potter, Martorell, and
Lonjers, 2005; Falmagne et al., 1990; Lakshminarayan, 1995; Taagepera et al.,
1997; Taagepera and Noori, 2000; Taagepera, Arasasingham, Potter, Soroudi,
and Lam, 2002; Taagepera, Arasasingham, King, Potter, Martorell, Ford, Wu,
and Kearney, 2008), and also simulated data (cf. Falmagne and Lakshmi-
narayan, 1994). Notice that, when a test is administered several times, the
number of parameters does not increase, whereas the number of response
categories—i.e. the number of degrees of freedom in the data—increases ex-
ponentially. If the number of gradations is not prohibitive, or if some Marko-
vian assumptions in the spirit of the last section are satisfied, the complexity
of the theory will remain well beneath that of the data to be explained. For
example, under the simplest Markovian assumption mentioned at the end of
the last section, the number of parameters of the theory is of the order of
|Q|, while the number of response categories is of the order of 2n|Q| (with n
applications of the test to the same sample of subjects), which is a good re-
turn. The maximization of the loglikelihood function in Equation (12.21) may
be achieved by a procedure such as the Conjugate Gradient Search algorithm
by Powell (1964) which is available in form of the C subroutine PRAXIS (see
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Gegenfurtner, 1992). In practice, the procedure is applied many times9, with
different starting values for the parameters, to ensure that the final estimates
do not correspond to a local maximum.

b) Some of the applications mentioned above (for example Taagepera et al.,
1997) were performed under the hypothesis that the learning latencies had
general gamma (rather than the correct exponential) distributions. In 12.5.1,
the gamma assumption was shown to be inconsistent with the other axioms.
However, because this inconsistency does not propagate to the predictions (in
the sense that Equation (12.19), for example, defines a genuine distribution
on the set of all pairs (R1, R2) of patterns of responses), it does not preclude a
good fit to the data. Moreover, these learning latencies affect the predictions
only indirectly, after smearing by the learning rate random variable. This
suggest that the predictions of the model may be robust to the particular
assumptions made on the learning latencies.

c) For the theory to be applicable, a well-graded knowledge structure must
be assumed. Methods for building a knowledge space have been considered in
Chapter 7 (cf. Koppen, 1989; Koppen and Doignon, 1990; Falmagne et al.,
1990; Kambouri, Koppen, Villano, and Falmagne, 1994; Müller, 1989; Dowl-
ing, 1991a,b, 1993a; Villano, 1991; Cosyn and Thiéry, 2000) and will be dis-
cussed again in more detail in Chapter 15. The special case of a learning space,
which implies wellgradedness, is analyzed in Chapter 16. A reasonable proce-
dure is to start the analysis with a tentative knowledge structure, presumed
to contain all the right states, and possibly some subsets of questions which
are not states. If the application of the model proves to be successful, this
starting knowledge structure can be progressively refined by assuming that
some learning paths have probability zero, thereby eliminating some states.
This method is exemplified in Falmagne et al. (1990).

12.10 An Application of the Theory to the Case n = 2

The most ambitious application of the theory described in this chapter is due
to Lakshminarayan (1995), and we summarize it here. Only the main lines of
the analysis and of the results will be reported.

12.10.1 The items. The domain contains the five problems in high school
geometry displayed in Figure 12.1, which deal with basic concepts such as
angles, parallel lines, triangles and the Pythagorean Theorem. These problems
are labeled a, b, c, d and e. Two versions (instances) of each problem were
generated, forming two sets V1 and V2 of five problems which were applied
at different times10. The differences between the two versions only concerned
the particular numbers used as measures of angles or length.

9 At least several hundred times.
10 V1 and V2 were in fact embedded into two larger equivalent sets containing 14

problems each.
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12.10.2 Procedure. The experiment had three phases:

1. Pretest. The subjects were presented with one version, and asked to
solve the problems. Approximately half of the subjects were given version V1,
and the rest, version V2.

2. Lesson. After completion of Phase 1, the test sheets were removed and
a 9-page booklet containing a lesson in high school geometry was distributed to
the subjects, who were required to study it. The lesson was directly concerned
with the problems to be solved.

3. Posttest. The subjects were given the other version of the test, and
were asked to solve the problems.

There was no delay between the phases, and the subjects were allowed
to spend as much time as they wanted on each problem. Typically, the stu-
dents spent between 25 to 55 minutes to complete the three phases of the
experiment.

The data consist in the observed frequencies of each of the 25 × 25 =
1024 possible pairs of response patterns. The subjects were undergraduate
students of the University of California at Irvine; 959 subjects participated in
the experiment.

12.10.3 Parameter estimation. The overall data set provided by the 959
subjects was split into two unequal part. Those of 159 subjects were set aside,
and kept for testing the predictions of the model. Those of the remaining
800 subjects were used to uncover the knowledge structure and to estimate
parameters. A tentative knowledge structure was initially postulated, based
on the content of the items. This structure was then gradually refined on the
basis of goodness-of-fit (likelihood ratio) calculation.

All the problems have open responses. Accordingly, all the guessing pa-
rameters ηq were set equal to zero. The remaining parameters were estimated
by a maximum likelihood method.

12.10.4 Results. The final knowledge structure was a knowledge space in-
cluded in that displayed in Figure 12.2. Two of the original gradations, namely
abcde and adbce were dropped in the course of the analysis because their es-
timated probabilities were not significantly different from zero. As a conse-
quence, the state {a, d} was removed. The resulting learning space is{

∅, {a}, {b}, {a, b},{b, c}, {a, b, c},
{a, b, d}, {b, c, d}, {a, b, c, d}, {a, b, c, d, e, }

}
.

This space has six gradations, five of which were assigned a non zero proba-
bility. All but one the remaining gradations had small probabilities (< .10).
Gradation bcade occurred with an estimated probability of .728. The esti-
mated probabilities of the five gradations are given in Table 12.1, together
with the estimates of the other parameters of the model. Note that t and t+δ
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(the two times of testing) are regarded as parameters because the time elapsed
since the beginning of learning geometry could not be assessed accurately. The
unit of t and δ is the same as that of ξ and is arbitrary.

Table 12.1. Estimates of the parameters.
We recall that all the parameters ηq have
been set equal to 0 a priori. The quanti-
ties t and t+ δ representing the two times
of testing are regarded as parameters in
this application because the time t elapsed
since the beginning of learning geometry
could not be assessed accurately.

Parameters Estimates

P(C = abcde) .047

P(C = bcdae) .059

P(C = bcade) .728

P(C = bacde) .087

P(C = badce) .079

γa 11.787

γb 25.777

γc 11.542

γd 34.135

γe 90.529

α 113.972

t 11.088

δ 2.448

ξ 13.153

βa .085

βb .043

βc .082

βd .199

βe .169

The fit of the model based of the value of the
log-likelihood statistic was good. In general,
the estimated values of the parameter seem
reasonable. In particular, the values obtained
for the βq are small, which is consistent with
the interpretation of these parameters as care-
less error probabilities. The value of δ is overly
large compared to that of t. For example if for
the sake of illustration we set the unit of t
as equal to one year, then the estimated total
time of learning until the first test amounts
to eleven years and one month, while the time
between the first and the second test is esti-
mated to be approximately two years and five
months, which is absurd.

The most likely explanation is that—relative to the two years and five
months—the eleven years and one month is an overestimation reflecting the
forgetting that took place for most students between the end of their learning
geometry in high school and the time of the test. If the first test had occurred
while the students were learning geometry in high school, the estimates of t
and δ would presumably have been more consistent.

Another subset of 4 items was analyzed by the same methods by Laksh-
minarayan (1995), which yielded a much less satisfactory fit. At this point,
deriving negative conclusions from these other results would be premature. As
we mentioned earlier, fitting a model of that kind, with so many parameters,
is a complex procedure which is not guaranteed to lead automatically to the
best knowledge structure and the best set of estimates of the parameters for
the data.
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12.11 Original Sources and Related Works

In this chapter, we formalize the learning that takes place in the framework
of a well-graded knowledge structure, as involving the choice of a gradation,
paired with a stochastic process describing the progressive mastery of the
items along that gradation. This concept is natural enough and was already
exploited to some extent in the models discussed in Chapter 11. The model
discussed here is to date the most elaborate implementation of this idea. As
made clear by our presentation, this model attempts to give a realistic picture
of learning by making an explicit provision for individual differences and by
describing learning as a real time stochastic process. Thus, the target data
for the model is made of n-tuples (R1, . . . , Rn) of responses patterns observed
at arbitrary times t1, . . . , tn. This attempt was only partly successful. The
potential drawbacks of the current model are summarized below together with
the relevant literature.

A first pass at constructing such a model was made by Falmagne (1989a).
Even though most of the ideas of this chapter were already used in that earlier
attempt, the 1989 model was not fully satisfactory because it was not formu-
lated explicitly as a stochastic process. The 1989 model was tested against a
standard unidimensional psychometric model by Lakshminarayan and Gilson
(1998), with encouraging results. In his 1993 paper published in the Journal
of Mathematical Psychology11, Falmagne developed what is essentially the
model of this chapter, except that the learning latencies were assumed to be
distributed as general gammas. In the notation of Equation 12.12, we had

P(Tq,λ ≤ δ) =

∫ δ

0

τγqλγq−1e−λτ

Γ (γq)
dτ, (12.22)

instead of

P(Tq,λ ≤ δ) = 1− e−(λ/γq)δ (12.23)

as assumed in this chapter, the interpretation of the parameters being the
same in both cases. A simulation study of the 1993 model was made by Fal-
magne and Lakshminarayan (1994). This model was successfully applied to
real data by Taagepera et al. (1997) which gave a good account of the ex-
perimental results. However, around May 1994, Stern and Lakshminarayan
(1995) discovered that the assumption that the learning latencies are dis-
tributed gamma was inconsistent with the axioms of the theory as stated
here, and surmised that the appropriate distributions for these latencies had
to be exponential (Stern and Lakshminarayan, 1995; Lakshminarayan, 1995;
Falmagne, 1996). Our tentative conclusion is that the model is fairly robust
with respect to specific hypotheses regarding the latency distributions.

11 Falmagne (1993).
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Problems

1. Formulate an axiom concerning the learning function `e resulting in a
system of stochastic learning paths that is not progressive (cf. Defini-
tion 12.2.4). (Hint: Allow for the possibility of forgetting.)

2. Argue that the Markovian assumption

P(Ktn+1
= Kn+1 Ktn = Kn,Rtn = Rn,E) = P(Ktn+1

= Kn+1 Ktn = Kn)

(with E as in Axiom [L]) discussed in Remark 12.2.5 (d) is inappropriate.
(Hint: Show by an example that the more detailed history embedded in
the event E in the l.h.s. may provide information on the learning rate
and/or the learning path, which in turn, may modify the probabilities of
the states at time tn+1.)

3. Investigate a possible reformulation of the learning function that would
not imply, via Equations (12.8) and (12.9), that the learning latencies are
distributed exponentially.

4. Verify Equation (12.18).

5. Establish all the assertions following Equation (12.18) in the proof of
Theorem 12.6.1.

6. Verify the computation of S(a,K) \ S(a,K ∪ {b}) in Remark 12.7.1.

7. Following up on the discussion of Remark 12.7.1, find a counterexample

to the Condition Q̊−1(a)∩ Q̊−1(K)∩ Q̊−1(K ∪{b}) = ∅, different from the
one in Example 12.7.2.

8. In relation with Example 12.7.2 and Remark 12.7.1, find necessary and
sufficient conditions on the knowledge structure (Q̊, K̊) such that, for all
substructures (Q,K), all states K ∈ K and all pairs of items a and b, the
set difference S(a,K)\S(a,K∪{b}) is empty. The result may evoke some
ironical reflexions. Check this impulse. Instead, work on Problem 9.

9. Investigate realistic cures for the difficulty pointed out by Example 12.7.2.

10. For any t > 0 and any item q, let Nt,q be the number of subjects having
provided a correct response to item q in a sample of N subjects. Let N t,q

denote the number of subjects having provided an incorrect response to
that item. Thus Nt,q + N t,q = N . Consider a situation in which a test
has been applied twice to a sample of N subjects, at times t and t + δ.
Investigate the statistical properties of N t+δ,q/Nt,q as an estimator of the
careless error probability βq. Is this estimator unbiased, that is, do we
have E(N t+δ,q/Nt,q) = βq?

11. Prove Lemma 12.3.3.



13

Uncovering the Latent State:
A Continuous Markov Procedure

Suppose that, having applied the techniques described in the preceding chap-
ters1, we have obtained a particular knowledge structure. We now ask: how
can we uncover, by appropriate questioning, the knowledge state of a partic-
ular individual? Two broad classes of stochastic assessment procedures are
described in this chapter and the next one.

13.1 A Deterministic Algorithm

By way of introduction, we first consider a simple algorithm in the spirit of
those discussed in Chapter 9 and which is suitable when there are no errors

13.1.1 Example. The knowledge structure

K =
{
∅, {a}, {c}, {a, b}, {a, c}, {b, c},

{a, b, c}, {a, b, c, d}, {a, b, c, d, e}
}
, (13.1)

with domain Q = {a, b, c, d, e} displayed in Figure 13.1 will serve as an illus-
tration for our discussion.

Figure 13.1. The learning space K of Equation (13.1).

1 And some other techniques which we describe in Chapters 15 and 16.

J.-C. Falmagne, J.-P. Doignon, Learning Spaces, 
DOI 10.1007/978-3-642-01039-2_13, © Springer-Verlag Berlin Heidelberg 2011 

∅

{c}

{a}

{b, c}

{a, c}

{a, b}

{a, b, c} {a, b, c, d} Q

of any kind and no lucky guesses.
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This knowledge structure is a learning space, with four gradations. These
special features will play no role in the assessment procedure describe below2.
We shall assume that a subject’s response never results from a lucky guess
or a careless error. (The impact of this assumption is discussed later in this
chapter.) Consider an assessment in which Question b is the first question
asked. If an incorrect response is obtained, only the states not containing b
must be retained. We indicate this conclusion by marking with the symbol

√
the remaining possible states in the second column of Table 13.1; they form
the subfamily Kb̄ (cf. Definition 9.1.2 for this notation).

Problem b a c
Response 0 1 1

∅
√

{a}
√ √

{c}
√

{a, b}
{a, c}

√ √ √

{b, c}
{a, b, c}
{a, b, c, d}
{a, b, c, d, e}

Table 13.1. Inferences from the successive
responses of a subject for the knowledge struc-
ture K of Figure 13.1. The subject’s response is
marked as ‘0’ for ‘incorrect’ and ‘1’ for ‘correct.’
The states remaining after each response are
indicated by the symbol ‘

√
’.

Next, Problem a is presented, and a correct response is recorded, eliminating
the two states ∅ and {c}. Thus, the only feasible states after two questions are
{a} and {a, c}. The last problem asked is c, which elicits a correct response,
eliminating the state {a}. In this deterministic framework, {a, c} is the only
state consistent with the data:

(b, incorrect), (a, correct), (c, correct).

Clearly, all the states can be uncovered by this procedure, which can be
represented by a binary decision tree (see Figure 13.2). The procedure is
certainly economical. For instance, if the states are equiprobable, a state can
be uncovered by asking an average of 32

9 questions out of 5 questions.
This procedure was investigated from a formal viewpoint by Degreef et al.

(1986) and was reviewed in Chapter 9. A major drawback of this type of algo-
rithm is that it cannot effectively deal with a possible intrinsic randomness, or
even instability, of the subject performance. Obvious examples of randomness
are the careless errors and lucky guesses formalized in the models developed in
Chapters 11 and 12. Another case of instability may arise if the subject’s state

2 However, remember that, in the case of a well-graded family, any knowledge state
is defined by its fringes (cf. Remark 4.1.8(a)). So, the outcome of an assessment
can be presented in the form of the fringes of the uncovered state. In the frame-
work of the theory, the outer fringe of a state specifies what a subject in that
state is ready to learn. This feature may play a critical role when the assessment
is a placement test or a prelude to teaching.
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b

b̄

d

d̄

ā

a

e

ē

c

c̄

a

ā

c̄

c

c

c̄

Data States Uncovered

bde {a, b, c, d, e}

bdē {a, b, c, d}

bd̄ac {a, b, c}

bd̄ac̄ {a, b}

bd̄ā {b, c}

b̄ac {a, c}

b̄ac̄ {a}

b̄āc {c}

b̄āc̄ ∅

Figure 13.2. Binary decision tree for uncovering the states in Example 13.1.1.

varies in the course of the questioning. This might happen if the problems of
the test cover concepts learned by the subject a long time earlier. The first few
questions asked may jolt the subject’s memory, and facilitate the retrieval of
some material relevant to the last part of the test. In any event, more robust
procedures are needed that are capable of uncovering a subject’s state, or at
least approaching it closely, despite noisy data.

13.2 Outline of a Markovian Stochastic Process

The Markov procedures described in this chapter and in Chapter 14 enter into
a general framework illustrated by Figure 13.3.

At the beginning of step n of the procedure, all the information gathered
from step 1 to step n−1 is summarized by a ‘likelihood function’ which assigns
a positive real number—a ‘likelihood value’—to each of the knowledge states
in the structure. This likelihood function is used by the procedure to select the
next question to ask. The mechanism of this selection lies in a ‘questioning
rule’, an operator applied to the likelihood function, whose output is the
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response

Questioning Rule
  Selected Item

Updating
    Rule

of the states
on trial n

of the states
on trial n+1

Selected
instance

Likelihood Subject's Likelihood

Response 
    Rule
  

Figure 13.3. Transition diagram for the two classes of Markovian procedures.

question chosen. The subject’s response is then observed, and it is assumed
that it is generated by the subject’s knowledge state, through a ‘response rule.’
In the simplest case, it is assumed that the response is correct if the question
belongs to the subject’s state, and incorrect otherwise. Careless error and
lucky guess parameters may also be introduced at this stage. (These will play
only a minor role in this chapter; however, see Remark 13.8.1.) Finally, the
likelihood function is recomputed, through an ‘updating rule’, based on the
question asked and the subject’s observed response.

In this chapter, we consider a case in which the likelihood function is
a probability distribution on the family of states. Our presentation follows
closely Falmagne and Doignon (1988a). As in Chapters 11 and 12, we con-
sider a probabilistic knowledge structure3 (Q,K, L). However, the results of
the present chapter also apply to any finite family K with Q = ∪K finite. For
every state K, we denote by L(K) the probability of state K in the popula-
tion of reference. We assume 0 < L < 1. For concreteness, we consider the
knowledge structure K of Example 13.1.1 and Figure 13.1 and we suppose
that the knowledge states have the probabilities represented by the histogram
of Figure 13.4A. In each of the three graphs of Figure 13.4, the knowledge
states are represented by squares, and the items by circles. A link between
a square and a circle means that the state contains the corresponding item.
For instance, the square at the extreme left of Figure 13.4A represents the
knowledge state {a}. We have L({a}) = .10, L({a, b}) = .05, etc.

The probability distribution L of the probabilistic knowledge structure
(Q,K, L) will be regarded as the a priori distribution representing the uncer-
tainty of the assessment engine at the beginning of assessment. We set L1 = L
to denote the likelihood function on step 1 of the procedure. As before, sup-
pose that item b is presented to the subject, who fails to respond correctly.
This information will induce a transformation of the likelihood L1 by an op-
erator, which will decrease the probabilities of all the states containing b, and
increase the probabilities of all the states not containing that item. The result-
ing distribution L2 is pictured by the histogram in Figure 13.4B. Next, items
a and c are presented successively, eliciting two correct responses. The accu-

3 Remember the assumptions “finite, partial” included in Definition 11.1.2 of this
concept.

Uncovering the Latent State: A Continuous Markov Procedure
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a b c d e

A. Initial likelihood of the states

a b c d e

B. Likelihood after a false response to item

a b c d e

C. Likelihood after a false response to item     and 
     a correct responses to items      and 
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Figure 13.4. Successive transformations of the likelihood induced by the events:
(item b, incorrect), (item a, correct), (item c, correct).

mulated effect of these events on the likelihood is depicted by the histogram in
Figure 13.4C representing L4, in which the probability of state {a, c} is shown
as much higher than that of any other state. This result is similar to what
we had obtained, with the same sequence of events, from the deterministic
algorithm represented in Figure 13.2, but much less brutal: a knowledge state
is not suddenly eliminated; rather, its likelihood decreases. Needless to say,
there are many ways of implementing this idea. Several implementations will
be considered in this chapter.

A possible source of noise in the data obviously lies in the response mech-
anisms, which we have formalized by the Local Independence Axiom [N] of
Chapter 12 (see Subsection 12.4.1 on page 224). For most of this chapter, we
shall assume that such factors play a minor role and can be neglected. In other
words, all the parameters βq and ηq take value zero during the main phase of
the assessment (thus there are no lucky guesses and no careless errors). Once



246 13

the assessment algorithm has terminated, the result of the assessment can be
refined by reviving these response mechanisms (cf. again our Remark 13.8.1).

In the meantime, the response rule will be simple. Suppose that the subject
is in some knowledge state K0 and that some question q is asked. The subject’s
response will be correct with probability one if q ∈ K0, and incorrect with
probability one in the other case.

13.3 Basic Concepts

13.3.1 Definitions. Let (Q,K, L) be some arbitrary probabilistic knowledge
structure with a finite domain Q. The set of all positive probability distribu-
tions on K is denoted by Λ+. (We thus have L ∈ Λ+.) We suppose that the
subject is, with probability one, in some unknown knowledge state K0 which
will be called latent and has to be uncovered.

Any application of an assessment procedure in the sense of this chapter is
a realization of a stochastic process (Rn,Qn,Ln), in which

n denotes the step number, or trial number, n = 1, 2, . . . ;

Ln is a random probability distribution on K; we have Ln = Ln ∈ Λ+

(so Ln > 0) if Ln is the probability distribution on K at the

beginning of trial n;

Ln(K) for K ∈ K, is a r.v. measuring the probability of state K on trial n;

Qn is a r.v. representing the question asked on trial n; we have

Qn = q ∈ Q if q is the question asked on trial n ;

Rn is a r.v. coding the response on trial n:

Rn =

{
1 if the response is correct.

0 otherwise.

The process begins, on trial 1, by setting L1 = L ∈ Λ+. So, the initial prob-
ability distribution is the same for any realization. Any further trial n > 1
begins with a value Ln ∈ Λ+ of the random distribution Ln updated as a
function of the event on trial n− 1. We write for any F ⊆ K,

Ln(F) =
∑
K∈F

Ln(K). (13.2)

The second feature of a trial involves the question asked, that is, the value
of the r.v. Qn. In general, the choice of a question is governed by a function
(q, Ln) 7→ Ψ(q, Ln) mapping Q × Λ+ into the interval [0, 1] and specifying
the probability that Qn = q. The function Ψ will be called the question-
ing rule. Two special cases of this function are analyzed in this chapter (see
Definitions 13.4.7 and 13.4.8 below).

Uncovering the Latent State: A Continuous Markov Procedure
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The response on trial n is represented by a value of the r.v. Rn. Only
two cases are considered: (i) a correct response, which is coded as Rn = 1;
(ii) an error, which is coded as Rn = 0. The probability of a correct response
to question q is equal to one if q ∈ K0, and to zero otherwise.

At the core of the procedure is a Markovian transition rule stating that,
with probability one, the likelihood function Ln+1 on trial n+ 1 only depends
on the likelihood function Ln on trial n, the question asked on that trial, and
the observed response. This transition rule is formalized by the equation4

Ln+1
a.s.
= u(Rn,Qn,Ln), (13.3)

in which u is a function mapping {0, 1} × Q × Λ+ to Λ+. The function u is
referred to as the updating rule. Two cases of this function will be considered
(see later Definitions 13.4.2 and 13.4.4). The diagram below summarizes these
transitions:

(Ln → Qn → Rn)→ Ln+1. (13.4)

The Cartesian product Γ = {0, 1} × Q × Λ+ is thus the state space of the
process, each trial n being characterized by a value of the triple (Rn,Qn,Ln).
We denote by Ω the sample space, that is, the set of all sequences of points
in Γ . The complete history of the process from trial 1 to trial n is denoted by

Wn = ((Rn,Qn,Ln), . . . , (R1,Q1,L1)).

The notation W0 stands for the empty history.

In general, the assessment problem consists in uncovering the latent
state K0. This quest has a natural formalization in terms of the condition

Ln(Ko)
a.s.−→ 1. (13.5)

When this condition holds for some particular assessment process, we shall
sometimes say that K0 is uncoverable (by that procedure).

We recall that for any subset A of a fixed set S, the indicator function of
A is a function x 7→ ιA(x) which is defined on S by

ιA(x) =

{
1 if x ∈ A
0 if x ∈ S \A. (13.6)

For convenience, all the main concepts are recalled in the list below.

4 The specification ‘a.s.’ is an abbreviation of ‘almost surely’ and means that the
equality holds with probability one. A similar remark holds for the ‘

a.s.−→ 1’ con-
vergence of Equation 13.5.
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13.3.2 Notation.

(Q,K, L) a finite probabilistic knowledge structure;

Λ+ the set of all positive probability distributions on K;

Γ the state space of the process (Rn,Qn,Ln)n∈N;

K0 the latent knowledge state of the subject;

L1 = L the initial probability distribution on K, 0 < L < 1;

Ln(K) a r.v. representing the probability of state K on trial n;

Qn a r.v. representing the question asked on trial n;

Rn a r.v. representing the response given on trial n;

Ψ (q,Ln) 7→ Ψ(q,Ln), the questioning rule;

u (Rn,Qn,Ln) 7→ u(Rn,Qn,Ln), the updating rule;

Wn random history of the process from trial 1 to trial n;
ιA the indicator function of a set A.

13.3.3 General Axioms. The three axioms below concern a probabilistic
knowledge structure (Q,K, L), the distinguished latent stateK0 of the subject,
and the sequence of random triples (Rn,Qn,Ln).

[U] Updating Rule. We have P(L1 = L) = 1, and for any positive integer
n and all measurable sets B ⊆ Λ+,

P(Ln+1 ∈ B Wn) = ιB
(
u(Rn,Qn,Ln)

)
,

where u is a function mapping {0, 1} × Q × Λ+ to Λ+. Writing uK for the
coordinate of u associated with the knowledge state K, we thus have

Ln+1(K)
a.s.
= uK(Rn,Qn,Ln).

Moreover, the function u satisfies the following condition:

uK(Rn,Qn,Ln)

{
> Ln(K) if ιK(Qn) = Rn,

< Ln(K) if ιK(Qn) 6= Rn.

[Q] Questioning Rule. For all q ∈ Q and all positive integers n,

P(Qn = q Ln,Wn−1) = Ψ(q,Ln)

where Ψ is a function mapping Q× Λ+ to the interval [0, 1].

[R] Response Rule. For all positive integers n,

P(Rn = ιK0
(q) Qn = q,Ln,Wn−1) = 1

where K0 is the latent state.

We recall that, as a knowledge structure, K contains at least two states,
namely ∅ and Q.

Uncovering the Latent State: A Continuous Markov Procedure



13.4 Special Cases 249

13.3.4 Definition. We shall refer to a process (Rn,Qn,Ln) satisfying the
Axioms [U], [Q] and [R] in 13.3.3 as a (continuous) stochastic assessment
process for (Q,K, L), parametrized by u, Ψ and K0. The functions u, Ψ and
ιK0

are called the updating rule, the questioning rule, and the response rule,
respectively.

13.3.5 Remarks. Axiom [R] is straightforward. Axioms [Q] and [U] govern,
respectively, the choice of a question Qn to be asked, and the reallocation of
the mass of Ln on trial n+1 depending on the values of Qn and Rn. Axiom [U]
states that if Ln = Ln, Qn = q and Rn = r then Ln+1 is almost surely equal
to u(r, q, Ln). As a general scheme, this seems reasonable, since we want our
procedure to specify the likelihood of each of the knowledge states on each
trial. This axiom ensures that no knowledge state will ever have a likelihood of
zero, and that the likelihood of any state K will increase whenever we observe
either a correct response to a question q ∈ K, or an incorrect response to a
question q /∈ K, and decrease in the two remaining cases. Notice that the first
two axioms pertain to the assessment process per se, while the third describes
some hypothetical mechanism governing a student’s response.

It is easily shown that each of (Rn,Qn,Ln), (Qn,Ln), and (Ln) is a
Markov process (see Theorem 13.5.2). An important question concerns general
conditions on the functions u and Ψ under which Ln converges to some random
probability distibution L on K independent of the initial distribution L. This
aspect of the process will not be investigated here, however. Rather, we shall
focus on the problem of defining useful procedures capable of uncovering the
subject’s knowledge state. Such procedures will be discussed in Section 13.6.

The class of processes defined by Axioms [U], [Q] and [R] is very large.
Useful special cases can be obtain by specializing the questioning rule and the
updating rule.

13.4 Special Cases

The initial likelihood L may be estimated, for example, by testing a repre-
sentative sample of subjects from the population, using one of the models
discussed in Chapters 11 and 12. In the absence of information on that initial
likelihood, we may reasonably set

L(K) =
1

|K| (K ∈ K).

13.4.1 Two examples of updating rule u. Suppose that some question q
is presented on trial n, and that the subject’s response is correct; thus, Qn = q
and Rn = 1. Axiom [U] requires that the likelihood of any state containing q
should almost surely increase, and the likelihood of any state not containing q
should almost surely decrease. If the response is incorrect, the opposite result
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should obtain. Some questions may be judged more revealing than others. For
instance, it may be argued that, since a correct response to a multiple choice
question may be due to a lucky guess, it should not be given as much weight
as, say, a correct numerical response resulting from a computation. Moreover,
the response itself may be taken into account: a correct numerical response
may signify the mastery of a question, but an error does not necessarily imply
complete ignorance. These considerations will be implemented into two rather
different exemplary updating rules, in which the reallocation of the mass of
Ln = Ln on trial n + 1 will be governed by a parameter which may depend
upon the question asked and on the response given on trial n.

13.4.2 Definition. The updating rule u of Axiom [U] will be called convex
with parameters θq,r, where 0 < θq,r < 1 for q ∈ Q and r ∈ {0, 1}, if the
function u of Axiom [U] satisfies the following condition:

For all K ∈ K and with Ln = Ln, Rn = r, and Qn = q,

uK(r, q, Ln) = (1− θq,r)Ln(K) + θq,rgK(r, q, Ln) (13.7)

where

gK(r, q, Ln) =

{
r Ln(K)
Ln(Kq)

, if K ∈ Kq

(1− r) Ln(K)
Ln(Kq̄)

, if K ∈ Kq̄.

Thus, the r.h.s. of Equation (13.7) specifies a convex combination between the
current likelihood Ln and a conditional one, obtained from discarding all the
knowledge states inconsistent with the observed response. The updating rule
is convex with constant parameter θ if Equation (13.7) holds with θq,r = θ
for all q ∈ Q and r ∈ {0, 1}.

One objection to this particular form of the updating rule is that it is not
‘commutative.’ One could require that the likelihood on trial n+ 1 should not
depend, as it does in Equation (13.7) (cf. Problem 1), on the order of the pairs
of questions and responses up to that trial. Consider the two cases

1. (Qn−1 = q,Rn−1 = r), (Qn = q′,Rn = r′),
2. (Qn−1 = q′,Rn−1 = r′), (Qn = q,Rn = r).

It could be argued that, for a given value of the likelihood Ln−1 = l, the
likelihood on trial n + 1 should be the same in these two cases because
they convey the same information. Slightly changing our notation by setting
ξ = (q, r), ξ′ = (q′, r′) and F (l, ξ) = u(r, q, l), this translates into the condition

F
(
F (l, ξ), ξ′

)
= F

(
F (l, ξ′), ξ

)
. (13.8)

In the functional equation literature, an operator F satisfying (13.8) is called
‘permutable’ (Aczél, 1966, p. 270). In some special cases, permutability greatly
reduces the possible form of an operator. However, the side conditions used
by Aczél (1966) are too strong for our purpose (see Luce, 1964; Marley, 1967,
in this connection). Nonetheless, this concept is of obvious relevance.

Uncovering the Latent State: A Continuous Markov Procedure
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13.4.3 Definition. We shall call permutable an updating rule u with an op-
erator F satisfying Equation (13.8).

An example of a permutable updating rule is given below.

13.4.4 Definition. The updating rule is called multiplicative with parame-
ters ζq,r, where 1 < ζq,r for q ∈ Q, r = 0, 1, if the function u of Axiom [U]
satisfies the condition: with Qn = q, Rn = r, Ln = Ln and

ζKq,r =

{
1 if ιK(q) 6= r,

ζq,r if ιK(q) = r
(13.9)

we have

uK(r, q, Ln) =
ζKq,rLn(K)∑

K′∈K ζK′q,rLn(K ′)
. (13.10)

It is easy to verify that this multiplicative rule is permutable (Problem 2).
Other updating rules applicable in different, but similar situations are

reviewed by Landy and Hummel (1986). The two examples of updating rules
introduced in 13.4.2 and 13.4.4 have been inspired by some operators used in
mathematical learning theory (see the Sources Section 13.10 at the end of this
chapter).

13.4.5 Remark. It was pointed out by Mathieu Koppen5 that the multi-
plicative updating rule can be interpreted as a Bayesian updating. The latter
occurs when the values of ζKq,r are linked in a specific manner with the prob-
abilities of respectively a careless error and a lucky guess in the answer for
item q (for the introduction of these probabilities, see 11.1.2). Fixing question
q, and slightly changing our notation, we write

Pq(K) for the a priori probability of state K,

Pq(K r) for the a posteriori probability of state K

after having observed response r,

with a similar interpretation for Pq(r K). From Bayes Theorem, we have

Pq(K r) =
Pq(r K)Pq(K)∑

K′∈K Pq(r K ′)Pq(K ′)
. (13.11)

We see that Equations (13.10) and (13.11) have the same form except that
ζKq,r cannot be regarded as a conditional probability. In particular, we do not
generally have

ζKq,0 + ζKq,1 = 1.

However, let us compare the multiplicative updating rule given in Equa-
tion (13.10) with the explicit form of the Bayesian rule. Equation (13.10)

5 Personal communication.
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requires that the values Ln+1(K) be proportional to the values ζKq,rLn(K)
(for a fixed question q and answer r), with

ζKq,r =


ζq,1 if q ∈ K, r = 1,

1 if q /∈ K, r = 1,

1 if q ∈ K, r = 0,

ζq,0 if q /∈ K, r = 0.

Similarly, Bayesian updating—Equation (13.11)—makes the values Ln+1(K)
proportional to the values ZKq,rLn(K), where the real numbers ZKq,r are speci-
fied by

ZKq,r =


1− βq if q ∈ K, r = 1,

γq if q /∈ K, r = 1,

βq if q ∈ K, r = 0,

1− γq if q /∈ K, r = 0.

Thus, the multiplicative updating rule coincides with Bayesian updating if
and only if for all items q

ζq,1
1− βq

=
1

γq
and

1

βq
=

ζq,0
1− γq

.

These equations can be rewritten as

ζq,1 =
1− βq
γq

and ζq,0 =
1− γq
βq

or as

βq =
ζq,1 − 1

ζq,1ζq,0 − 1
and γq =

ζq,0 − 1

ζq,1ζq,0 − 1
.

13.4.6 Two examples of questioning rule. A simple idea for the ques-
tioning rule is to select, on any trial n, a question q that partitions the set K

of all the states into two subsets Kq and Kq̄ with a mass as equal as possible;
that is, such that Ln(Kq) is as close as possible to Ln(Kq̄) = 1−Ln(Kq). Note
in this connection that any likelihood Ln defines a set S(Ln) ⊆ Q containing
all those questions q minimizing

|2Ln(Kq)− 1|.
Under this questioning rule, we must have Qn ∈ S(Ln) with a probability
equal to one. The questions in the set S(Ln) are then chosen with equal
probability.

13.4.7 Definition. The questioning rule [Q] will be called half-split when

Ψ(q, Ln) =
ιS(Ln)(q)

|S(Ln)| . (13.12)

Uncovering the Latent State: A Continuous Markov Procedure
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Another method may be used, which is computationally more demanding
and may seem at first blush more exact. The uncertainty of the assessment
engine on trial n of the procedure may be evaluated by the entropy of the
likelihood on that trial, that is, by the quantity

H(Ln) = −
∑
K∈K

Ln(K) log2 Ln(K).

It seems reasonable to choose a question so as to reduce that entropy as much
as possible. For Qn = q and Ln = Ln the expected value of the entropy on
trial n+ 1 is given by the sum

P(Rn = 1 Qn = q)H
(
u(1, q, Ln)

)
+ P(Rn = 0 Qn = q)H

(
u(0, q, Ln)

)
. (13.13)

But the conditional probability P(Rn = 1 Qn = q) of a correct response to
question q is unknown, since it depends on the latent state K0. Thus, (13.13)
cannot be computed. However, it makes sense to replace, in the evaluation
of (13.13), the conditional probability P(Rn = 1 Qn = q) by the likelihood
Ln(Kq) of a correct response to question q. The idea is thus to minimize the
quantity

H̃(q, Ln) = Ln(Kq)H
(
u(1, q, Ln)

)
+ Ln(Kq̄)H

(
u(0, q, Ln)

)
, (13.14)

over all possible q ∈ Q. Let J(Ln) ⊆ Q be the set of questions q minimizing
H̃(q, Ln). The question asked on trial n+ 1 is then randomly selected in the
set J(Ln).

13.4.8 Definition. This particular form of the questioning rule, which is
specified by the equation

Ψ(q, Ln) =
ιJ(Ln)(q)

|J(Ln)| , (13.15)

will be referred to as informative. Note that, in Equation (13.15), the choice
of a question varies with the updating rule. This is not the case for Equa-
tion (13.12). Surprisingly, for the convex updating rule with a constant pa-
rameter θ, the half-split and the informative questioning rule induce the same
drawing of questions. We shall postpone the proof of this fact for the moment,
however (see Theorem 13.6.6 whose proof is in 13.9.1).

13.5 General Results

13.5.1 Convention. In the rest of this chapter, we assume that (Rn,Qn,Ln)
is a stochastic assessment process for a probabilistic knowledge structure
(Q,K, L) with L > 0, parametrized by u, Ψ and K0. Special cases of this
procedure will be specified whenever appropriate.
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13.5.2 Theorem. The stochastic process (Ln) is Markovian. That is, for any
positive integer n and any measurable set B ⊆ Λ+

P(Ln+1 ∈ B Ln, . . . ,L1) = P(Ln+1 ∈ B Ln). (13.16)

A similar property holds for the processes (Rn,Qn,Ln) and (Qn,Ln).

Proof. Using successively Axioms [U], [Q], and [R], we have

P(Ln+1 ∈ B Ln, . . . ,L1)

=
∑

(Rn,Qn)

P(Ln+1 ∈ B Rn,Qn,Ln, . . . ,L1)P(Rn,Qn Ln, . . . ,L1)

=
∑

(Rn,Qn)

ιB
(
u(Rn,Qn,Ln)

)
P(Rn,Qn Ln, . . . ,L1)

=
∑

(Rn,Qn)

ιB
(
u(Rn,Qn,Ln)

)
P(Rn Qn,Ln . . .L1)P(Qn Ln, . . . ,L1)

=
∑

(Rn,Qn)

ιB
(
u(Rn,Qn,Ln)

)
ιK0

(Qn)Ψ(Qn,Ln)

which only depends on the set B and on Ln. We leave the two other cases to
the reader (Problems 3 and 4).

In general, a stochastic assessment process is not necessarily capable of
uncovering a latent state K0. The next theorem gathers some simple, but very
general results in this connection. We recall that 4 denotes the symmetric
difference between sets6.

13.5.3 Theorem. If the latent state is K0, then for all positive integers n,
all real numbers ε with 0 < ε < 1 and all states K 6= K0, we have

P
(
Ln+1(K0) > Ln(K0)

)
= 1; (13.17)

P
(
Ln+1(K0) ≥ 1− ε

)
≥ P

(
Ln(K0) ≥ 1− ε

)
; (13.18)

P
(
Ln+1(K) < Ln(K)

)
= P(Qn ∈ K 4K0). (13.19)

Moreover, we have

lim
n→∞

P
(
Ln+1(K0) ≥ 1− ε > Ln(K0)

)
= 0. (13.20)

Equation (13.18) implies that the sequence P
(
Ln(K0) ≥ 1− ε

)
converges.

Proof. Equation (13.17) is an immediate consequence of Axioms [U] and [R].
It implies

P
(
Ln+1(K0) ≥ 1− ε Ln(K0) ≥ 1− ε

)
= 1. (13.21)

6 Cf. 1.6.12.
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Consequently,

P
(
Ln+1(K0) ≥ 1− ε

)
= P

(
Ln+1(K0) ≥ 1− ε Ln(K0) ≥ 1− ε

)
P
(
Ln(K0) ≥ 1− ε

)
+ P

(
Ln+1(K0) ≥ 1− ε Ln(K0) < 1− ε

)
P
(
Ln(K0) < 1− ε

)
≥ P

(
Ln(K0) ≥ 1− ε

)
. (13.22)

This establishes Equation (13.18). Writing µ(ε) = limn→∞ P
(
Ln(K0) ≥ 1−ε

)
,

and taking limits on both sides of Equation (13.22), we obtain using (13.21)
again

µ(ε) = µ(ε) + lim
n→∞

P
(
Ln+1(K0) ≥ 1− ε > Ln(K0)

)
,

yielding (13.20). The l.h.s. of (13.19) can be decomposed into

P
(
Ln+1(K) < Ln(K) Qn ∈ K 4K0

)
P(Qn ∈ K 4K0)

+ P
(
Ln+1(K) < Ln(K) Qn ∈ K 4K0

)
P(Qn ∈ K 4K0).

By Axioms [R] and [U], the factor P
(
Ln+1(K) < Ln(K) Qn ∈ K4K0

)
in the

first term is equal to one, and the last term vanishes. Thus, Equation (13.19)
follows.

13.6 Uncovering the Latent State

Under some fairly general conditions on the updating and the questioning
rules, the latent state K0 can be uncovered. These general conditions include
the cases in which the updating rule is convex or multiplicative, and the
questioning rule is half-split. We first consider an example using a convex
updating rule with a constant parameter θ and the half-split questioning rule.

13.6.1 Example. Let Q = {a, b, c} and

K =
{
∅, {a}, {b, c}, {a, c}, {a, b, c}

}
,

with the latent state K0 = {b, c} and L1(K) = .2 for all K ∈ K. Since the
questioning rule is half-split, and

|2L1(Kq)− 1| = .2

for all q ∈ Q, we have S(L1) = {a, b, c} (in the notation of 13.4.6). That is, on
trial one, the questions are selected in S(L1) with equal probabilities. Notice
that

L1(Kā) = L1(Kb) = .4, while L1(Kc) = .6.

For the likelihood of the state K0 = {b, c} on trial two, we thus obtain, by the
convex updating rule
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L2(K0) =


(1− θ) .2 + θ .2.4 with probability 1

3 (a is chosen);

(1− θ) .2 + θ .2.4 with probability 1
3 (b is chosen);

(1− θ) .2 + θ .2.6 with probability 1
3 (c is chosen).

In accordance with Equation (13.17) of Theorem 13.5.3, this implies

P
(
L2(K0) > L1(K0)

)
= 1.

In fact, Theorem 13.6.7 shows that K0 is uncoverable.

We now turn to a general result of convergence, based on some strength-
ening of the conditions defining a stochastic assessment process.

13.6.2 Definition. An updating rule u is called regular if there is a non-
increasing function v : ]0, 1[→ R such that, for all r ∈ {0, 1}, q ∈ Q, and
l ∈ Λ+,

(i) v(t) > 1 for all t ∈ ]0, 1[ ;
(ii) uK(r, q, l) ≥ v

(
l(Kq)

)
l(K), if ιK(q) = r = 1;

(iii) uK(r, q, l) ≥ v
(
l(Kq̄)

)
l(K), if ιK(q) = r = 0.

13.6.3 Theorem. Both the convex and the multiplicative updating rules are
regular.

Proof. For the convex updating rule, if ιK(q) = r = 1, Equation (13.7) can
be rewritten as

uK(r, q, Ln) =

(
1 + θq,r

(
1

Ln(Kq)
− 1

))
Ln(K).

We define θ = min{θq,r q ∈ Q, r ∈ {0, 1}}. Note that θ > 0. This gives

uK(r, q, Ln) ≥
(

1 + θ

(
1

Ln(Kq)
− 1

))
Ln(K).

In the case ιK(q) = r = 0, we obtain similarly

uK(r, q, Ln) =

(
1 + θq,r

(
1

Ln(Kq̄)
− 1

))
Ln(K)

≥
(

1 + θ

(
1

Ln(Kq̄)
− 1

))
Ln(K).

Thus, (i)–(iii) in Definition 13.6.2 are satisfied with

v(t) = 1 + θ

(
1

t
− 1

)
, for t ∈]0, 1[.

Uncovering the Latent State: A Continuous Markov Procedure
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For the multiplicative updating rule, in the case ιK(q) = r = 1, we have

uK(r, q, Ln) =
ζq,r

ζq,rLn(Kq) + Ln(Kq̄)
Ln(K)

=
ζq,r

1 + (ζq,r − 1)l(Kq)
Ln(K),

and similarly, if ιK(q) = r = 0,

uK(r, q, Ln) =
ζq,r

Ln(Kq) + ζq,rLn(Kq̄)
Ln(K)

=
ζq,r

1 + (ζq,r − 1)l(Kq̄)
Ln(K).

For q ∈ Q and r ∈ {0, 1}, each of the functions vq,r : t 7→ vq,r(t) defined for
ζq,r > 1 and t ∈ ]0, 1[ by

vq,r(t) =
ζq,r

1 + (ζq,r − 1)t

is decreasing and takes values > 1. Thus, v = min{vq,r q ∈ Q, r ∈ {0, 1}}
satisfies (i)–(iii) in Definition 13.6.2.

As far as the questioning rule is concerned, it is intuitively clear that, from
the standpoint of the observer, it would not be efficient to choose a question q
with a likelihood Ln(Kq) of a correct response close to zero or one. Actually,
it makes good sense to choose, as in the half-split questioning rule, a question
q with Ln(Kq) as far as possible from zero or one. A much weaker form of
this idea is captured in the next definition.

13.6.4 Definition. Let ν be a real valued function defined on the open in-
terval ]0, 1[, with two numbers γ, δ > 0 satisfying γ + δ < 1, such that

(i) ν is strictly decreasing on ]0, γ[;

(ii) ν is strictly increasing on ]1− δ, 1[;

(iii) ν(t) > ν(t′) whenever γ ≤ t′ ≤ 1 − δ and either 0 < t < γ or
1− δ < t < 1.

An example of such a function ν is shown in Figure 13.5.

Define, for l ∈ Λ+,

S(ν, l) =
{
q ∈ Q ν

(
l(Kq)

)
≤ ν

(
l(Kq′)

)
for all q′ ∈ Q

}
. (13.23)

A questioning rule Ψ is said to be inner if such a function ν exists with

Ψ(q, l) =
ιS(ν,l)(q)

|S(ν, l)| .
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Figure 13.5. An example of the function ν defined in 13.6.4.

13.6.5 Theorem. The half-split questioning rule is inner.

This follows readily from the definitions, using ν(t) = |2t− 1|.

13.6.6 Theorem. The informative questioning rule is inner if the updating
rule is convex with a constant parameter θ. Moreover, in this case, the in-
formative and the half-split questioning rules induce the same drawing of
questions.

The proofs of this theorem and of the next one are gathered in a later
section of this chapter, which contains starred material. The next theorem
states the main result of this chapter.

13.6.7 Theorem. Let (Rn,Qn,Ln) be a stochastic assessment process para-
metrized by u, Ψ and K0, with u regular and Ψ inner. Then, K0 is uncoverable
in the sense that:

Ln(K0)
a.s.→ 1.

13.6.8 Corollary. A latent knowledge state is uncoverable by a stochastic
assessment process with an updating rule which is either convex or multi-
plicative, and a questioning rule which is half-split.

Proof. This results from Theorems 13.6.3, 13.6.5, 13.6.7 and the definitions.

13.6.9 Corollary. A latent knowledge state is uncoverable by a stochastic as-
sessment process with a convex updating rule having a constant parameter θ,
and an informative questioning rule.

Proof. Use Theorems 13.6.3, 13.6.6, 13.6.7 and the definitions.

Notice that the results of this Chapter are not complete: we do not have a
proof of the almost sure convergence Ln(K0)→ 1 for the fourth special case,
namely, a multiplicative updating rule with an informative questioning rule.

Uncovering the Latent State: A Continuous Markov Procedure
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13.7 A Two-Step Assessment Algorithm

The last section describes a stochastic assessment process for uncovering a
latent state in a (finite, partial) probabilistic knowledge structure (K, Q).
However, in a real-life applications such as those of the ALEKS system, the
number of potential states—the size of K—may sometimes exceed the capacity
of the computer. To handle the problem, we sketched in Remark 2.4.13 a more
elaborate algorithm consisting in the following two main steps (see 2.4.2 for
the definitions and notation of the technical terms).

(1) Perform an assessment on a projection K|Q′ of K on a suitable subsetQ′

of Q. This step results in a state W of the projection K|Q′ , where W = K∩Q′
for some K ∈ K.

(2) Perform an assessment on the Q′-child K[K] of K. This leads to a state
M of K[K], which is equal to L \∩[K] for some state L of K. The state L can
then be taken as the final state obtained for the two-step assessment routine.

We devote this section to a more detailed description of this algorithm.

13.7.1 Definition. Let (Q,K) be a finite, partial knowledge structure, and
let Q′ be a proper subset of Q. Take any element W of the projection of K
on Q′. The family K(Q′,W ) = {L ∈ K L ∩Q′ = W} is called the ascendent
family of W . The child of W is the family K[Q′|W ] = {L\ (∩K(Q′,W )) L ∈
K(Q′,W )}. The family K(Q′,W ) is thus a subfamily of K and the child
K[Q′|W ] of W is exactly the Q′-child K[K] of K (in the sense of 2.4.1), for
any K in K(Q′,W ).

In all the algorithms of the present section, the word ‘assessment’ refers
to an assessment subroutine producing a single state (for instance, the imple-
mentation of a stochastic assessment process culminating in the choice of a
most probable state, in the sense of Definition 13.3.4 and Theorem 13.6.7). We
first consider a routine and an algorithm that are applicable to general finite,
partial knowledge structures. We then turn to knowledge spaces and learn-
ing spaces. In such special cases, more powerful dedicated routines become
available to the algorithms.

13.7.2 Algorithm (Two-step, Version 1). A finite, partial knowledge struc-
ture K is given to the algorithm with Q = ∪K.

Step 1. 1.1. Choose a suitable subset Q′ in Q—see Remark 13.7.3(b).
1.2. Build the projection K|Q′ of K on Q′.
1.3. Run an assessment on K|Q′ and get a state W of K|Q′ .

Step 2. 2.1. Build the child K[Q′|W ] of W .
2.2. Run an assessment on K[Q′|W ], and get an element X of

K[Q′|W ].
2.3. Return W ∪ (∩K(Q′,W )) ∪X.

Some comments on the algorithm are in order.
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13.7.3 Remarks. a) We need to keep Q′ small enough that the assessment
can effectively be run on the projection K|Q′ . For a similar reason, we also
need to keep the child K(Q′,W ) small. Since these two requirements are op-
posites, the construction of Q′ requires careful handling. In all the practical
applications that we are aware of, the size of Q does not exceed a few hun-
dred items and the choice of Q′ is feasible. Note that the choice of Q′ is made
before the assessment and is not affected by it. So, Steps 1.1 and 1.2 can be
performed by a preprocessor program days or months before any assessment is
made. This means that the same subset Q′ can be used for different students.
Also, several interchangeable Q′ subsets can be computed ahead of time, with
the algorithm randomly choosing between them at the time of the assessment.

b) Since the final state selected is W ∪(∩K(Q′,W ))∪X, the second step of
this algorithm never changes the status of any item lying in Q′∪(∩K(Q′,W )).
It only adds to W the whole of ∩K(Q′,W ) and maybe further items from
Q \ (Q′ ∪ ∩K(Q′,W )). Thus, this algorithm does not correct during Step 2
possible mistakes made by the algorithm on Step 1. In Algorithm 13.7.12, we
propose a cure for this potentially serious drawback.

c) Another drawback is of a different nature. The computations are
grounded on the whole family K, which may be very large. For real applica-
tions, the base is much more accessible, and in any event considerably smaller,
than K itself. In 13.7.8, we restate Algorithm 13.7.2 for the case in which the
base of the knowledge space is given. A word of warning is in order about the
information conveyed by the base. This information might simply consist in
a listing of the elements of the base, each of which is an atom. We could also
give, for each such atom, the list of items at which it is an atom. (See Defi-
nitions 3.4.5 for these concepts. As will be recalled before Algorithm 13.7.10,
the second point of view is akin to the surmise relation.) We will adopt both
points of view successively. They lead to different algorithms.

A few basic properties of the base with respect to projections are needed
for our next algorithm. They are collected in Theorem 13.7.4, together with
additional results, some of which are applicable to infinite spaces. We recall
that a space K is finitary when the intersection of any chain of states in K is
a state in K (cf. Definition 3.6.1; motivation for the concept is given at the
end of Section 3.9).

13.7.4 Theorem. Let K be a knowledge space on Q with base B, and let Q′

be a nonempty subset of Q. Denote by K′ = K|Q′ the knowledge space which
is the projection of K on Q′ (cf. Lemma 2.4.6(ii)), and by G the projection of
the base B on Q′. Then the following three assertions are true:

(i) G spans K′, but K′ does not necessarily have a base;
(ii) if the base B′ of K′ exists, it satisfies B′ ⊆ G. However, the converse

inclusion does not necessarily hold;
(iii) if K is finitary, then so is K′. In this case, K′ has a base B′ which satisfies

B′ ⊆ G but not necessarily G ⊆ B′.

Uncovering the Latent State: A Continuous Markov Procedure
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Proof. That G spans K′ follows directly from the fact that B spans K.
Example 13.7.6 below completes the proof of Assertion (i).

Next, suppose that the base B′ exists. Since G spans K′, the inclusion
announced in Assertion (ii) follows from Theorem 3.4.2. Example 13.7.5 es-
tablishes the second assertion in (ii).

To prove the first assertion in (iii), we consider a chain (Li)i∈I of states
in K′. For each index value i in the index set I, there is a state Ki in K such
that Li = Ki ∩ Q′. Since the family (Ki)i∈I is not necessarily a chain, we
build a new family by setting Hi = ∪{K ∈ K K ∩Q′ ⊆ Li }, for each i in I.
Then (Hi)i∈I is a chain of states of K which moreover satisfies Li = Hi ∩Q′
(because Ki ⊆ Hi). By assumption, K is finitary. Hence ∩{Hi i ∈ I } is a
state of K, say H. From ∩{Li i ∈ I } = H ∩Q′, it follows that ∩{Li i ∈ I }
is a state of K′. This establishes that K′ is finitary. By Theorems 3.6.3 and
3.6.6, K′ has then a base which we denote as before by B′. From (ii), we know
B′ ⊆ G. We rely on Example 13.7.5 again to show that the reverse inclusion
does not necessarily hold.

13.7.5 Example. The family {{a}, {b}, {a, b, c}} forms the base of a knowl-
edge space on Q = {a, b, c}. Choose Q′ = {a, b}. In the notation of Theo-
rem 13.7.4, we get B′ = {{a}, {b}} ⊂ G = {{a}, {b}, {a, b}}.

13.7.6 Example. Here is a case in which some knowledge space with a base
has a projection without a base. This example supports the second assertion in
Theorem 13.7.4(i). Let O be the collection of all open subsets of the real line.
For each state O of O, form the set O∪{O}. The span of G = {O∪{O} O ∈ O}
is a knowledge space K on R∪O. Since any two states in G are incomparable
with respect to inclusion, the base of K must be G. The projection of K on R
coincides with O and consequently has no base.

13.7.7 Remark. Apart from the finitary assumption on K we do not know
of any interesting, sufficient conditions on the knowledge space K in Theo-
rem 13.7.4 implying that the trace K′ has always a base (for any nonempty
subset Q′ of Q). A necessary and sufficient condition would of course be even
preferable; see Open Problem 18.1.3.

The next algorithm is similar to Algorithm 13.7.2 but accepts as input the
base B rather than the knowledge space K itself 7. As in Algorithm 13.7.2, the
word “assessment” refers to any assessment routine producing a single state,
but this time we may use a (more powerful) routine that only works on spaces
specified by their base.

As a child of a knowledge space is always a partial knowledge space but
not necessarily a knowledge space (see Lemma 2.4.6 and Example 2.4.3), a
minor extension of the concept of ‘base’ is required. The base† of a partial
knowledge space K is a family B of sets which spans† K and is moreover

7 This algorithm still does not correct on Step 2 possible mistakes made on Step 1.
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minimal with respect to inclusion for having this property. Notice that ∅ ∈ B

if and only if ∅ ∈ K. Also, if ∅ ∈ K (that is, if K is a space), then B is a base†

of K if and only if B \ {∅} is a base of K. And if ∅ /∈ K, then B is a base† of
K if and only if B is a base of K ∪ {∅}. To simplify notation, we omit the †
superscrit in the sequel and rely on the context to discriminate between the
two closely related concepts of a base.

We refer to Algorithm 3.5.5 and Remark 3.5.8 for constructing the knowl-
edge space spanned by a family of sets.

When the input data consist of the base, we need a subroutine to generate
economically the ascendent family K(Q′,W ) = {L ∈ K L∩Q′ = W} (where
W is the state of K|Q′ uncovered in Step 1). While it is clear that K(Q′,W ) is
a partial knowledge space, and so has a unique base F, it is not obvious how
F can be efficiently built from the base B of K. There is however a simple way
to produce F, albeit not an efficient one, that goes as follows. Starting from
the base B of K and the element W of K|Q′ , we first define

B(W ) = {B ∈ B B ∩Q′ ⊆W}. (13.24)

The span of B(W ) contains not only all the sets we want, but in fact many
more, for it contains all the states K in K such that K ∩ Q′ ⊆ W (while
we aim at K ∩ Q′ = W ). To obtain the desired states, we generate the span
of B(W ) (as in Algorithm 3.5.5) and then screen the span to eliminate from
it any state K that satisfies K ∩ Q′ ⊂ W . This is the crux of Step 2.2 in
the next algorithm. Additional comments on the algorithm are provided in
Remarks 13.7.9 below.

13.7.8 Algorithm (Two-step, Version 2). The input consists of the base
B of a finite knowledge space K.

Step 1. 1.1. Set Q = ∪B, and then choose a suitable subset Q′ in Q.
1.2. Build the projection G of the base B on Q′.
1.3. Run Algorithm 3.5.5 to get the knowledge space K|Q′ spanned

by G.
1.4. Run the assessment on K|Q′ and get a state W of K|Q′ .

Step 2. 2.1. Form the collection B(W ) = {B ∈ B B ∩Q′ ⊆W}.
2.2. Compute the ascendent family L = {K ∈ K K ∩ Q′ = W}

(see text before algorithm).
2.3. Compute M = {L \ ∩L l ∈ L}.
2.4. Compute the base of the partial knowledge space M.
2.5. Perform an assessment on the partial knowledge space M (sum-

marized by its base), and get an element X of M.
2.6. Return W ∪ (∩L) ∪X.

This algorithm prompts several remarks.
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13.7.9 Remarks. a) Note that B(W ) also contains all elements B of B such
that B ∩Q′ = ∅.

b) In Step 2.2, L is exactly the ascendent family K(Q′,W ). In Step 2.3,
M is the child K[Q′|W ] of W . In Step 2.4, Algorithm 3.5.1 can be used.

c) As regards the word “suitable” in Step 1.1, we pointed out in Remark
13.7.3(a) that the family K|Q′ had to be small enough for Algorithm 13.7.2
to be applicable. The same remark also applies to Algorithm 13.7.8, not only
with respect to K|Q′ but also to the family L.

d) The assessment routine used in Algorithm 13.7.8, at Steps 1.4 and 2.4,
should be designed to accept any knowledge space as input. Indeed, both
collections K|Q′ and M form knowledge spaces.

The information in the base of a knowledge space can be obtained from
another source. We suppose for the rest of this section that the knowledge
space K is provided to the algorithm in the form of its surmise relation σ.
Remember from Definition 5.1.2 and Theorem 5.2.5 that, for any p inQ, σ(p) is
the collection of all the atoms of K at p. So, we have ∪p∈Qσ(p) = B. However,
σ contains more information than the base. This added information calls to a
slight modification of the algorithm. The new Algorithm 13.7.10 relies on the
following facts and notation. If Q′ ⊆ Q, then ∪p∈Q′{B ∩Q′ B ∈ σ(p)} spans
the projection of K on Q′. In the definitions below, the set Q′ is supposed
to be clearly indicated by the context and is omitted in the notation. Given
W ∈ K|Q′ and p ∈W , we write:

(i) σ(p,W ) for {B ∈ σ(p) B ∩Q′ ⊆W},
(ii) B(W ) for {B ∈ B B ∩Q′ ⊆W and ∀q ∈W : B /∈ σ(q,W )},
(iii) K(W ) for the span of B(W ).

We may build the ascendent family L = {K ∈ K K∩Q′ = W} in another
way, via the following trick: if W = {q1, q2, . . . , qk}, then collect all the unions
of an element in K(W ) with one element of σ(qi,W ) for each i = 1, 2, . . . , k.
There are a priori

|K(W )| × |σ(q1,W )| × |σ(q2,W )| × · · · × |σ(qk,W )|

such unions. However there is no need to keep duplicated states in the collec-
tion. Problem 11 asks the reader to find a method for handling such duplica-
tions.

13.7.10 Algorithm (Two-step, Version 3). The input consists of the sur-
mise function σ of a finite knowledge space K.

Step 1. 1.1. Set Q = ∪p∈Qσ(p), and then choose a suitable subset Q′ in Q.
1.2. Set H = ∪p∈Q′{B∩Q′ B ∈ σ(p)}, and compute the span K|Q′

of H (by running Algorithm 3.5.5).
1.3. Run the assessment on K|Q′ and get a state W of K|Q′ .
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Step 2. 2.1. Compute all collections σ(p,W ) for p ∈W .
2.2. Compute the subcollection L = {K ∈ K K ∩Q′ = W } of K

by applying the trick described before the algorithm.
2.3. Compute M = {L \ ∩L L ∈ L}.
2.4. Perform an assessment on the knowledge space M, and get an

element X of M.
2.5. Return W ∪ (∩L) ∪X.

13.7.11 Remarks. a) Regarding the word ‘suitable’ in Step 1.1, the com-
ments in Remark 13.7.9(c) are also applicable here.

b) The assessment routine used in Algorithm 13.7.10, at Steps 1.3 and 2.4,
should accept as input any knowledge space. Indeed, both collections K|Q′

and M = {L \ ∩L L ∈ L} form knowledge spaces.

In Remark 13.7.3(c), we mentioned a serious defect of Algorithm 13.7.2: it
does not contain in Step 2 any mechanism for correcting possible errors made
in selecting the set W produced in Step 1. Algorithms 13.7.8 and 13.7.10 share
the same defect. We devote the rest of this section to a sketch of an improved
procedure.

The last two-step algorithm of this section amends the defect just men-
tioned. It does so by a rule of thumb using balls or neighborhoods in the sense
of Definitions 3.4.5 and 4.1.6. The idea is to replace, before starting Step 2, the
set W selected in Step 1 with some kind of (modified) neighborhood around
W in the projection K|Q′ and then to infer a more general family than the
antecedent one K(Q′,W ), or better to directly replace the antecedent family
K(Q′,W ) with an appropriate subfamily of K. For convenience, we denote the
latter, new family as L(W ). Many possible ways exist for building L(W ), and
consequently (at least) as many ways of counter-acting errors made in pro-
ducing W . We will come back to this in Remarks 13.7.13(a) and (b) below.

13.7.12 Algorithm (Two-step, Version 4). The algorithm receives the sur-
mise function σ of some knowledge space K.

Step 1. 1.1. Set Q = ∪p∈Qσ(p), and then choose a subset Q′ in Q.

1.2. Set H = ∪p∈Q′{B ∩ Q′ B ∈ σ(p)}, and compute the span
K|Q′ of H (by running Algorithm 3.5.5).

1.3. Run the assessment on K|Q′ and get a state W of K|Q′ .

Step 2. 2.1. In the space K build the approximating set L(W ) (see text
before algorithm and also the Remarks 13.7.13).

2.2. Perform an assessment on the family L(W ) and get an ele-
ment X of L.

2.3. Return X.
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13.7.13 Remarks. a) For Algorithm 13.7.12 to be applicable, both K|Q′ and
L(W ) must be acceptable by our assessment routine. Moreover, it must be
possible to build L(W ) in a reasonable amount of time. Here is a possibility
for L(W ) which seems to fit these requirements. Take a ball centered at W
in K|Q′ , say N(W,k) (for some adequate, small value of k; see 4.1.6 for the
terminology used here8). Then set L(W ) = {K ∈ K K ∩Q′ ∈ N(W,k)}. To
build the latter family L(W ) in Step 2.2, we could make a repeated use of the
trick described just before Algorithm 13.7.10 (and used there). We apply the
trick to each element W ′ of N(W,k) individually, and then form the union
L(W ) of all the resulting families K(W ′).

b) It would be interesting to further investigate the possibilities for L(W ),
in particular in the case in which the applicability of the assessment routine
is restricted to some types of structures. In this regard, notice that balls do
not share all the properties we would like them to have. In particular, they
are generally not ∪-closed nor well-graded—see our next example. Notice that
the definition of L(W ) does not require the detour to a neighborhood in K|Q′ .

13.7.14 Example. In the knowledge space K with

K =
{
∅, {a}, {b}, {a, b}, {a, c}, {b, c}, Q

}
, (13.25)

where Q = {a, b, c}, the ball N(∅, 2) equals K \ {Q} and is neither ∪-closed
nor well-graded (in view of its two elements {a, c} and {b, c}). It is as easy
to build similar examples with a ball centered at a nonempty state and/or
with a larger radius. On the other hand, a ball of radius 1 is automatically
well-graded, but not necessarily ∪-closed.

13.8 Refining the Assessment

13.8.1 Remark. In practice, the output of an assessment algorithm in the
style of this chapter takes the form of a probability distribution Ln (for some
final trial number n) on the collection of states. In principle, such a probability
distribution will eventually have a mass concentrated on one or a few closely
related states. For example, the procedure may have selected three largely
overlapping knowledge states K1,K2 and K3. As an illustration, suppose that

K1 = {a, b, d, e}, K2 = {b, c, d}, K3 = {a, b, c, e} ,
with

Ln(K1) = Ln(K2) = .25, Ln(K3) = .40 ,

and the rest of the mass of Ln being scattered among the remaining states.
On the basis of this information, the best bet for the state of the subject

8 Other concepts of “neighborhood” of W in K|Q′ could also be used.
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is K3. However, one may wish to refine this assessment by reconsidering at
that time the full sequence of questions asked and responses observed during
the application of the procedure. The selection of one among these three
states could be based on a Bayesian heuristic. Recalling the local independence
assumption (Axiom [N] in 12.4.1), we can recompute the conditional likelihood
of observing each of the selected states K1, K2 and K3, given the actual
sequence of responses to the questions asked. The states yielding the greatest
likelihood can then be taken as the final result of the assessment. Obviously,
such a computation makes sense only when good estimates are available for
the probabilities βq and ηq of careless errors and lucky guesses, respectively.

Suppose that the subject has been asked questions c, d, and e, and has
provided an incorrect response to c, and a correct response to both d and e.
We denote these data by the letter ‘D’. By the local independence Axiom [N],
the conditional probabilities of these data, given the three states, are

P (D K1) = (1− ηc)(1− βd)(1− βe), (13.26)

P (D K2) = βc(1− βd)ηe, (13.27)

P (D K3) = βcηd(1− βe). (13.28)

Using a Bayesian rule to recompute the probabilities of the states, we get
for i = 1, 2, 3:

P (Ki D) =
P (D Ki)Ln(Ki)∑3
j=1 P (D Kj)Ln(Kj)

. (13.29)

Let us assume that, from previous analyses, the following estimates have been
obtained for the careless error and lucky guess parameters:

β̂c = β̂d = .05, β̂e = .10,

η̂c = η̂d = .10, η̂e = .05.

Replacing the P (D Kj) in (13.29) by their estimates in terms of the β̂q’s and
η̂q’s, via Equations (13.26), (13.27) and (13.28), we obtain approximately

P̂ (K1 D) = .988,

P̂ (K2 D) = .003,

P̂ (K3 D) = .009.

The picture resulting from such a computation9 is quite different from that
based on Ln alone: the overwhelmingly most plausible state is now K1.

9 Note that, even though this Bayesian computation is heuristically defensible, it
is not strictly founded in theory; see Problem 6 in this connection.
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13.9 Proofs∗

13.9.1 .Proof of Theorem 13.6.6. (All logarithms are in base 2.) By defi-
nition of the informative questioning rule in 13.4.8 and Equation (13.14), we
have to minimize, over all q in Q, the quantity (writing l = Ln for simplicity)

H̃(q, l) = l(Kq)H
(
u(1, q, l)

)
+ l(Kq̄)H

(
u(0, q, l)

)
, (13.30)

where
l(Kq) =

∑
K∈Kq

l(K), l(Kq̄) =
∑
K∈Kq̄

l(K).

This quantity depends upon the updating rule u. As the updating rule is
assumed to be convex with a constant parameter θ, we obtain from Equa-
tion (13.7)

H
(
u(1,q, l)

)
= −

∑
K∈K

uK(1, q, l) log uK(1, q, l)

= −
∑
K∈Kq

l(K)

(
1− θ +

θ

l(Kq)

)(
log l(K) + log

(
1− θ +

θ

l(Kq)

))

−
∑
J∈Kq̄

l(J)(1− θ)
(
log l(J) + log(1− θ)

)
(13.31)

and

H
(
u(0,q, l)

)
= −

∑
J∈Kq̄

l(J)

(
1− θ +

θ

l(Kq̄)

)(
log l(J) + log

(
1− θ +

θ

l(Kq̄)

))

−
∑
K∈Kq

l(K)(1− θ)
(
log l(K) + log(1− θ)

)
. (13.32)

Using Equations (13.30), (13.31) and (13.32) and grouping appropriately
leads to

H̃(q, l) = H(l)− 2l(Kq)l(Kq̄)(1− θ) log(1− θ)

− l(Kq)
(
(1− θ)l(Kq) + θ

)
log

(
1− θ +

θ

l(Kq)

)
− l(Kq̄)

(
(1− θ)l(Kq̄) + θ

)
log

(
1− θ +

θ

l(Kq̄)

)
.
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That is, with l(Kq) = t and for t ∈ ]0, 1[

g(t) = −2t(1− t)(1− θ) log(1− θ)− t
(
(1− θ)t+ θ

)
log

(
1− θ +

θ

t

)
− (1− t)

(
(1− θ)(1− t) + θ

)
log

(
1− θ +

θ

1− t

)
, (13.33)

we have
H̃(q, l) = H(l) + g(t). (13.34)

Notice that g is symmetric around 1
2 , that is, g(t) = g(1− t) for 0 < t < 1.

To establish the two assertions of the Theorem, it suffices now to prove that
the function g is convex on ]0, 1[ and has a strict extremum at 1

2 . (Thus, g will
serve as the function ν in Definition 13.6.4.) Since g is symmetric around 1

2 ,
we only have to show that the second derivative is strictly positive on ]0, 1

2 [.
We shall derive this from the fact that g′′′(t) < 0 for 0 < t < 1

2 , together with
g′′( 1

2 ) > 0. To compute the derivatives, we simplify the expression of g. With
the notation

a(t) = (1− θ)t, b(t) = (1− θ)t+ θ,

f(t) = −a(t)b(t) log
b(t)

a(t)
,

Equation (13.33) simplifies into

g(t) = − log(1− θ) +
1

1− θ
(
f(t) + f(1− t)

)
. (13.35)

Using a′(t) = b′(t) = 1− θ, we obtain for the derivatives of f

f ′′(t) = (1− θ)2

(
θ
a(t) + b(t)

a(t) b(t)
− 2 log

b(t)

a(t)

)
,

f ′′′(t) = − (1− θ)3 θ3

a(t)2 b(t)2
< 0.

Equation (13.35), implies that g′′′(t) < 0 for 0 < t < 1
2 .

On the other hand, with

h(θ) =
2θ

1− θ2
− log

1 + θ

1− θ ,

we have

g′′
(

1

2

)
= 4(1− θ)h(θ).

Since limθ→0+ h(θ) = 0 and h′(θ) > 0 for 0 < θ < 1, we have g′′( 1
2 ) > 0.
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13.9.2 .Proof of Theorem 13.6.7 Let Ω̃ be the set of all realizations ω for
which, for every trial n,

(i) Qn ∈ S(ν,Ln), with S as in Definition 13.6.4;
(ii) Rn = ιK0

(Qn).

Notice that Ω̃ is a measurable set of the sample space Ω, and that P(Ω̃) = 1.
Writing Lωn(K0) for the value of the random variable Ln(K0) at the point

ω ∈ Ω, we only have to establish that for any point ω ∈ Ω̃, we have

lim
n→∞

Lωn(K0) = 1.

Take ω ∈ Ω̃ arbitrarily. It follows readily from the assumptions that Lωn(K0)
is nondecreasing, and thus converges. Therefore, it suffices to show that
Lωni(K0) → 1 for at least one subsequence s = (ni) of the positive inte-
gers. Since K is finite and Ln(K) ∈ ]0, 1[, we can take s = (ni) such that
Lωni(K) converges for all K ∈ K. In the rest of this proof, we consider a fixed
subsequence s satisfying those conditions.

We define a function fω,s : Q→ [0, 1] by

fω,s(q) =

{
limi→∞ Lωni(Kq) if q ∈ K0;

limi→∞ Lωni(Kq̄) if q /∈ K0.

We also define

Q̃w,s = {q ∈ Q fω,s(q) < 1}.

If Q̃w,s is empty, the fact that Lωni(K0) → 1 follows readily from Lemma 3
(see below). The core of the proof of Theorem 13.6.7 consists in establishing

that Q̃w,s = ∅, which is achieved by Lemma 2.

Lemma 1. If fω,s(q) < 1, then {i ∈ N Qni(ω) = q} is a finite set.

Proof. Assume that q ∈ K0. Since fω,s(q) < 1, there is ε > 0 such that
fω,s(q) + ε < 1. If Qni(ω) = q and i is large enough to ensure that Lωni(Kq) ≤
fω,s(q) + ε, we derive

Lωni+1
(K0) ≥ Lωni+1(K0)

≥ v
(
Lωni(Kq)

)
Lωni(K0) (by Definition 13.6.2)

≥ v
(
fω,s(q) + ε

)
Lωni(K0).

Since v
(
fω,s(q) + ε

)
> 1 does not depend on i and Lωni(K0) ≤ 1, we may have

Qni(ω) = q for at most a finite number of values of i. The proof is similar in
the case q /∈ K0. ♦

Lemma 2. Q̃w,s = {q ∈ Q fω,s(q) < 1} = ∅.
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Proof. We proceed by contradiction. If fω,s(q) < 1 for some q ∈ Q, we
can assert the existence of some positive integer j and some ε > 0 such that
whenever i > j, we have

either 0 < l1(K0) ≤ Lωni(Kq) < fω,s(q) + ε < 1 if q ∈ K0,

or 0 < l1(K0) ≤ Lωni(Kq̄) < fω,s(q) + ε < 1 if q /∈ K0.

This means that for i > j, both Lωni(Kq) and Lωni(Kq̄) remain in some interval

]γ′q, 1 − δ′q[ with 0 < γ′q, δ
′
q. The above argument applies to all q ∈ Q̃w,s. In

view of the finiteness of Q̃w,s, the index q may be dropped in γ′q, δ
′
q. Moreover,

referring to Definition 13.6.4, we can assert the existence of γ̄ and δ̄ such that
0 < γ̄ < γ, 0 < δ̄ < δ and Lωni(Kq) ∈]γ̄, 1− δ̄[ for i > j and q ∈ Q̃w,s.

Since Q̃w,s is finite, Lemma 1 may be invoked to infer the existence of

a positive integer k such that Qni(ω) /∈ Q̃w,s whenever i > k. Note that,

by definition of Q̃w,s, we have fω,s(q
′) = 1 for all q′ /∈ Q̃w,s. Since Lωni(Kq′)

converges, there is i? > j, k such that neither Lωni(Kq′) nor Lωni(Kq′) are points

of ]γ̄, 1 − δ̄[ for all i > i? and q′ /∈ Q̃w,s. By definition of Ω̃, we must have

Qni(ω) ∈ Q̃w,s, contradicting i > k. ♦

Define, for every K ∈ K,

Aω,s(K) = {q ∈ K fω,s(q) = 1}.

Lemma 3. Suppose that, for some K ∈ K, Aω,s(K) 6= Aω,s(K0). Then

lim
i→∞

Lωni(K) = 0.

Proof. Assume that there is some q ∈ K0 \K such that fω,s(q) = 1; that is
limi→∞ Lωni(Kq) = 1. This implies limi→∞ Lωni(Kq̄) = 0 and the thesis since
K ∈ Kq̄. The other case, q ∈ K \K0, is similar. ♦

By Lemma 2, K 6= K0 implies Aω,s(K) 6= Aω,s(K0). It follows from
Lemma 3 that, for all K 6= K0, limi→∞ Lωni(K) = 0, yielding Lωni(K0)→ 1.

This concludes the proof of Theorem 13.6.7.

13.9.3 Remark. A careful study of the above proof shows that the assump-
tion that the questioning rule is inner can be replaced by the following one. For
any γ, δ ∈ ]0, 1[, denote by En,q(γ, δ) the event that γ < Ln(Kq) < 1− δ, and
let En(γ, δ) = ∪q∈QEn,q(γ, δ). The condition states that there exists σ > 0
such that, for all γ, δ ∈]0, σ[,

P
(
Qn = q′ En,q′(γ, δ) ∩ En(γ, δ)

)
= 0.

In other words, and somewhat loosely: no question q will be chosen with
Ln(Kq) in a neighborhood of one or zero when this can be avoided.
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13.10 Original Sources and Related Works

Except for Section 13.7, the algorithms of which are new, this chapter fol-
lows closely Falmagne and Doignon (1988a). The first applications of the
other algorithms described in this chapter were made by M. Villano, who has
tested them extensively in his dissertation (Villano, 1991); see also Villano,
Falmagne, Johannesen, and Doignon (1987) and Kambouri (1991). These al-
gorithms form a key component of the knowledge assessment engine of the
ALEKS system briefly described in Chapter 1. Various results concerning the
predictive power (or validity) of such assessments have been obtained. Some
of these results are summarized in Chapter 17.

As mentioned earlier, the updating operators involved in the algorithms
have been inspired by some operators of mathematical learning theory (see
Bush and Mosteller, 1955; Norman, 1972). Specifically, the convex updating
rule is related to a Bush and Mosteller learning operator (Bush and Mosteller,
1955), and the multiplicative updating rule is close to the learning operator
of the so-called beta learning model of Luce (1959) (also relevant are Luce,
1964; Marley, 1967). Bayesian updating rules in intelligent tutoring systems
have been discussed by Kimbal (1982).

Problems

1. Show that the convex updating rule defined by Equation (13.7) is not
permutable in the sense of Equation (13.8).

2. Check that the multiplicative updating rule of Equation (13.9) is per-
mutable in the sense of Equation (13.8).

3. Complete the proof of Theorem 13.5.2 and show that the stochastic pro-
cess (Rn, Qn, Ln) is Markovian.

4. (Continuation.) Prove that the process (Qn,Ln) is also Markovian.

5. In the knowledge structure of Example 13.6.1, suppose that the half-split
questioning rule and the multiplicative updating rule with a constant pa-
rameter ζq,r have been used. Verify Equations (13.17), (13.18) and (13.19)
for n = 1, 2. You should assume that L1(K) = .2 for any state K.

6. Discuss the Bayesian computation proposed in Remark 13.8.1 for refining
the assessment from a theoretical viewpoint.

7. Give a detailed proof of Corollary 13.6.8.

8. Give a detailed proof of Corollary 13.6.9.
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9. Let Q = {a, b, c} and K = {∅, {a, b}, {b, c}, {a, c}, Q}. Assume that the
subject’s state varies randomly between trials according to the probability
distribution φ defined by φ({a, b}) = φ({a, c}) = φ(Q) = 1

3 . Suppose
that the half-split questioning rule and the convex updating rule with a
constant parameter θ are used. Prove that limn→∞E(Ln({b, c}) > 0 (or
better, compute this limit). Argue then that even the domain of φ cannot
be uncovered by the assessment process.

10. Suppose that the subject’s knowledge state changes once during the as-
sessment. Discuss in detail the impact of such a change on the efficiency
and the accuracy of the multiplicative assessment process.

11. Examine the problem of the duplicates in Steps 2 and 3 of Algorithm 13.7.10.
Either find an algorithm for the economic removal of such duplicate, or
come up with another solution.

Uncovering the Latent State: A Continuous Markov Procedure
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A Markov Chain Procedure

This chapter discusses an assessment procedure that is similar in spirit to
those described in Chapter 13, but different in a key aspect: it is based on a
finite Markov chain rather than on a Markov process with an uncountable set
of Markov states. As a consequence, the procedure requires less storage and
computation. It can thus be implemented on a small machine. A multi-step
application of the procedure described in this chapter can be set up exactly
as we did for the procedure of the previous chapter.

14.1 Outline

A fixed, finite knowledge structure (Q,K) is used by the assessment engine.
Later in this chapitre, we will assume that (Q,K) is well-graded. We suppose
that, on any trial in the course of the assessment, some of the knowledge
states in K are considered as plausible from the standpoint of the assessment
engine. These ‘marked states’ are collected in a family which is regarded as
a value of a random variable Mn, where the index n = 1, 2, . . . indicates the
trial number. During the first phase of the procedure, this family decreases
in size until a single marked state remains. In the second phase, the single
‘marked state’ evolves in the structure. This last feature allows the assessment
engine, through a statistical analysis of the observed sequence of problems
and answers, to estimate the ‘true’ state (or states, if the subject knowledge
state varies somewhat from trial to trial; we give a formal definition of ‘true’
states in 14.2.2.) Note that, in some cases, a useful estimate can be obtained
even if the ‘true’ state estimate is not part of the structure. Before getting
into technicalities, we will illustrate the basic ideas by tracing an exemplary
realization of the Markov chain to be described.

14.1.1 Example. We take the same knowledge structure as in Example 13.1.1
(cf. Figure 13.1), that is:

K =
{
∅, {a}, {c}, {a, c}, {b, c},{a, b}, {a, b, c},

{a, b, c, d}, {a, b, c, d, e}
}
. (14.1)

J.-C. Falmagne, J.-P. Doignon, Learning Spaces, 
DOI 10.1007/978-3-642-01039-2_14, © Springer-Verlag Berlin Heidelberg 2011 
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We suppose that the assessment engine is initially unbiased in the sense
that all the knowledge states are regarded as plausible. Thus, all nine states of
K are marked and we set by convention M1 = K. (In some situations, a smaller
subset of states could be marked that would reflect some a priori information
on the student population.) During the first phase of the procedure, each
question asked is selected in such a manner that, no matter which response is
given (correct or incorrect), the number of marked states is decreased as much
as possible. This goes on until only a single marked state remains. For example,
suppose that Mn = M is the set of marked states on trial n. Assume that
some question q is chosen on that trial and that a correct response is given.
The set of states marked on trial n + 1 would be Mq, the subset of states of
M containing q. If the response is incorrect, then the set of marked states on
trial n+ 1 would be Mq̄, that is, the subset of states of M not containing q. It
makes sense to select q in order to minimize the maximum of the two possible
numbers of states kept. This clearly amounts to selecting a question q that
divides as equally as possible the currently marked states into those containing
q and those not containing q. So, q should render∣∣|Mq| − |Mq̄|

∣∣
as small as possible. In our example, we have for q = a and M = K∣∣|Ka| − |Kā|

∣∣ = |6− 3| = 3.

Similar calculations for the other questions give the counts:

for b : |5− 4| = 1,

for c : |6− 3| = 3,

for d : |2− 7| = 5,

for e : |1− 8| = 7.

Thus, b should be the first question asked. Denoting the question asked on
trial n by Qn, a random variable, we set Q1 = b with probability 1. Suppose
that we observe an incorrect answer. We denote this fact by writing R1 = 0. In
general, we define Rn as a random variable taking the value 1 if the question
asked on trial n is correctly answered, and 0 otherwise. In our example, the
family of marked states becomes on trial 2

M2 =
{
∅, {a}, {c}, {a, c}

}
.

The new counts for selecting the next question are:

for a : |2− 2| = 0,

for b : |0− 4| = 4,

for c : |2− 2| = 0,

for d : |0− 4| = 4,

for e : |0− 4| = 4.
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Thus, either a or c should be asked. We choose randomly between them, with
equal probabilities: P(Q2 = a) = P(Q2 = b) = .5. Suppose that we ask item a
and get a correct answer, that is Q2 = a and R2 = 1. The family of marked
states on trial 3 is

M3 =
{
{a}, {a, c}

}
.

With probability 1, we get Q3 = c. If R3 = 1, we are left with the single
marked state {a, c}. That is, we have

M4 =
{
{a, c}

}
.

In this miniature example, the second phase of the procedure starts on
trial 4. From here on, the set of marked states will always contain a single
state which may vary from trial to trial according to the question asked and
the response given. The choice of a question on any trial n ≥ 4 is based on the
set of all the states in the ball or neighborhood of the current single marked
state. Specifically, we use the ball formed by all states in K situated at a
distance at most 1 from that marked state (cf. 4.1.6). In the case of the single
marked state {a, c}, this ball is

N({a, c}, 1) =
{
{a, c}, {a}, {c}, {a, b, c}

}
.

As in Phase 1, the next question q is selected in order to split as equally as
possible this set of states into those which contain q and those which do not
contain q. Here, a, b or c will be randomly selected (with equal probability).
If the answer collected confirms the current single marked state, we keep
it as the only marked state. Otherwise, we change this state into another
one, according to the new information. For concreteness, we consider the four
generic cases given in Table 14.1. Suppose first that Q4 = a and R4 = 0
(row 1 of Table 14.1). As the response to a is incorrect, we remove a from
the single marked state {a, c}, which yields the single marked state {c}, with
M5 = {{c}}.

Table 14.1. Four generic cases producing M5.

M4 Q4 R4 M5

{{a, c}} a 0 {{c}}

{{a, c}} a 1 {{a, c}}

{{a, c}} b 0 {{a, c}}

{{a, c}} b 1 {{a, b, c}}

In row 2 of Table 14.1, Q4 = a and a is correctly solved. Thus {a, c} is
confirmed and we keep it as the single marked state, that is M5 = {{a, c}}.
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In row 3, we also end up with the same single marked state {a, c} as a result
of a confirmation, but this time b is asked and the answer is incorrect. Finally,
in row 4, b is also asked but yields a correct answer. As a result, we add b to
the current single marked state. A third possible question on trial 4 is c; we
leave this case to the reader. Table 14.2 summarizes an exemplary realization
of the process in the early trials. By convention, we set M1 = K. Rows 4, 5
in Table 14.2 correspond to row 1 in Table 14.1.

Table 14.2. An exemplary realization of the process in the early trials.

trial n Mn Qn Rn

1 K b 0

2 {∅, {a}, {c}, {a, c}} a 1

3 {{a}, {a, c}} c 1

4 {{a, c}} a 0

5 {{c}} . . . . . .

14.1.2 Remarks. a) In this example, it is easy to check that the marking rule
sketched here will always yield a single marked state after trial 4, whatever
the question asked and the answer observed. It is clear that some assumptions
about the knowledge structure are needed in order to establish these results in
general. We will assume the structure to be well-graded and that the question
is selected in the fringe of the single marked state (cf. Definitions 2.2.2, 4.1.6,
and Theorem 4.1.7). Under these conditions, only one state will remain marked
(see Theorem 14.3.3).

b) Our rationale for adopting these transition rules is dictated by caution.
Some misleading answers by the subject may occur in the course of the pro-
cedure (due to lucky guesses or to careless errors, for example), resulting in
a failure to uncover the ‘true’ state among those in the structure. It is also
possible that the knowledge structure itself is mistaken to some extent: some
states might be missing. Ideally, the final outcome of our procedure should
compensate for both kinds of errors. This can be achieved by analyzing the
data collected during the second phase of the procedure, after the single state
has been reached. For instance, suppose that some particular state S has
been omitted from the structure K used by the assessment engine. This miss-
ing state may nevertheless closely resemble some of the states in K, say K1,
K2 and K3. In such a case, the sequence of single marked states, in the sec-
ond phase of the procedure, may very well consist in transitions between these
three states. The intersection and the union of these three states may provide
lower and upper bounds for the state S to be uncovered.
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On the other hand, if we believe that the state to be uncovered is one
of the states visited during the second phase, then the choice between them
may be dictated by standard statistical methods. In the style of Section 13.8,
we may simply chose that state maximizing the likelihood of the sequence
of responses observed, using the conditional response probabilities βq and ηq
introduced in Chapter 11 in the context of the local independence assumption
(Definition 11.1.2). In general, the single marked states visited during the
second phase of the procedure may be used to estimate the true state whether
or not this state is contained in the structure used by the assessment engine.

Using the balls around states to guide both the choice of the question and
the determination of the marked states is a sound idea not only for the second
phase, but in fact for the whole process. The axioms given in the next section
formalize this concept. The procedure described here shares many features
with those presented in Chapter 13. The diagram displayed in Figure 14.1
highlights the differences and the similarities.

Choice of
  problem and
     instance

Subject's
response

Questioning Rule

Response Rule

Updating Rule

Family of
marked states
on trial  n

Family of
marked states
on trial  n + 1

Figure 14.1. Diagram of the
transitions for the Markov chain
procedures.

14.2 The Stochastic Assessment Process

The stochastic assessment procedure is described by four sequences of jointly
distributed random variables (Rn,Qn,Kn,Mn), where n = 1, 2, . . . stands for
the trial number.

The subject’s unobservable state on trial n is denoted by Kn. We as-
sume that Kn takes its values in a fixed finite knowledge structure K with
domain Q. (Examples will be given later in which this assumption is weak-
ened; see 14.6.3.) The question asked and the response observed on trial n are
denoted by Qn and Rn; these two random variables take their values respec-
tively in Q and {0, 1}, with 0 standing for incorrect and 1 for correct. Finally,
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the random variable Mn stands for the family of marked states on trial n.
As indicated in our introductory section, these marked states are those which
are regarded as plausible candidates for the subject’s unknown state. Thus,
the values of Mn lie in 2K. The stochastic process is defined by the sequence
of quadruples (Rn,Qn,Kn,Mn), n = 1, 2, . . . The complete history of the
process from trial 1 to trial n is abbreviated as

Wn =
(
(Rn,Qn,Kn,Mn), . . . , (R1,Q1,K1,M1)

)
,

with W0 denoting the empty history.
The four axioms given below specify the probability measure recursively.

We first give general requirements, involving several unspecified functions and
parameters. In the next section, severe restrictions will be put on these func-
tions and parameters. Note that, in the spirit of Chapter 11, we use a local
independence assumption (cf. Definition 11.1.2) to specify the conditional re-
sponse probabilities in Axiom [RM].

14.2.1 Axioms for the Markov chain procedure. The Markov chain is
specified by four axioms.

[K] Knowledge State Rule. There is a fixed probability distribution
π on K such that for all natural numbers n,

P(Kn = K Mn, Wn−1) = π(K).

In words: The knowledge state of the subject varies from trial to trial according
to a probability distribution π on K, independent of the trial number.

[QM] Questioning Rule. There is a questioning function τ : Q × 2K →
[0, 1] such that, for all natural numbers n,

P(Qn = q Kn, Mn, Wn−1) = τ(q,Mn).

That is: The question asked on trial n depends only on the marked states.

[RM] Response Rule. Two parameters 0 ≤ βq < 1 and 0 ≤ ηq < 1 are
attached to each item q, such that for all nonnegative integers n,

P(Rn = 1 Qn = q, Kn = K, Mn,Wn−1) =

{
1− βq if q ∈ K;

ηq if q /∈ K.
Accordingly: The response on trial n only depends upon the knowledge state
and the question asked on that trial via the parameters βq and ηq, respectively.

[M] Marking Rule. There is a marking function

µ : 2K × {0, 1} ×Q× 2K → [0, 1]

such that

P(Mn+1 = Ψ Wn) = µ(Ψ,Rn,Qn,Mn).

Thus: The marked states on trial n+1 only depend upon the following events
on trial n: the marked states, the question asked and the response collected.
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14.2.2 Definition. A process (Rn,Qn,Kn,Mn) satisfying Axioms [K], [QM],
[RM], and [M] is a (discrete) stochastic assessment process parametrized by π,
τ , β, η, and µ. The case in which ηq = 0 for each question q is called fair. This
case deserves special attention in the theory since, in many practical applica-
tions, the questions may be designed so as to make lucky guesses impossible
or negligibly rare. If in addition βq = 0 for each q, then this case is straight.

The knowledge states K for which π(K) > 0 will be called the true states;
they form the support of π, denoted by supp(π). Our tentative view is that
in practice the support will only contain a small number of states, which
moreover are ‘close to each other’ in a sense made precise in the next section.
If the support contains only one state, this state is the unit support of π.

As indicated in Axioms [QM] and [M], the functions τ and µ are referred
to as the questioning function and the marking function, respectively. Special
cases of the process defined by the four general axioms will arise from particu-
larizing the questioning function and the marking function. In general, as indi-
cated by a cursory examination of these axioms, the process (Rn,Qn,Kn,Mn)
is a Markov chain. The same remark holds for various other subprocesses,
such as (Mn) and (Qn,Mn). Note in passing the implicit assumption that
the subject’s state distribution is not affected by the questioning procedure.
The Markov chain (Mn) will be referred to as the marking process and is of
central interest. Its behavior is affected by several sources of errors (or ran-
domness), in particular the error probabilities βq, the guessing probabilities
ηq, and the subject’s distribution π on the family of states.

14.3 Combinatorial Assumptions on the Structure

To implement the concepts introduced in Example 14.1.1, some combinatorial
machinery is required which extends the tools introduced in Definition 4.1.6.
We consider a finite, discriminative knowledge structure (Q,K). As before, we
measure the distance between two states K and L in K by their symmetric
difference distance d(K,L) = |K 4 L|, which counts the number of items by
which K and L differ. We now generalize the notion of neighborhood of a
state (Definition 4.1.6) to that of neighborhood of a collection of states.

14.3.1 Definition. The ε-neighborhood of any subcollection Ψ of K is defined
by the equation

N(Ψ, ε) = {K ′ ∈ K d(K,K ′) ≤ ε, for some K in Ψ}.

The states in N(Ψ, ε) are called ε-neighbors of Ψ . Those ε-neighbors containing
item q are (q, ε)-neighbors of Ψ and similarly those that do not contain q are
(q̄, ε)-neighbors. We define

Nq(Ψ, ε) = N(Ψ, ε) ∩Kq and Nq̄(Ψ, ε) = N(Ψ, ε) ∩Kq̄,



280 14 A Markov Chain Procedure

calling these sets respectively the (q, ε)-neighborhood and (q̄, ε)-neighborhood
of Ψ . When Ψ = {K}, we abbreviate N({K}, ε) into N(K, ε). In the same vein,
we also write in shorthand Nq(K, ε) and Nq̄(K, ε).

To exercise these concepts, here are a few straightforward facts whose
proofs we leave to the reader as Problem 4. For y = q or y = q̄, we always
have Ny(Ψ, 0) = Ψy ⊆ Ψ . The last inclusion is strict except in two cases:
(i) y = q ∈ ∩Ψ ; or (ii) y = q̄ and q /∈ ∪Ψ . Also, Ny(Ψ, 0) is empty if y = q /∈ ∪Ψ ,
or y = q̄ and q ∈ ∩Ψ .

These neighborhood concepts will be used to specify the questioning func-
tion and the marking function along the lines introduced in Example 14.1.1.
Let (Rn,Qn,Kn,Mn) be a stochastic assessment process parametrized by π,
τ , β, η, and µ. We impose that the process selects the question q asked on
trial n on the basis of the set Mn of marked states. To this aim, the process
builds the ε-neighborhood N(Mn, ε), where ε may depend on the size of Mn.
Loosely speaking, q is chosen so as to split this ε-neighborhood into two sub-
sets Nq(Mn, ε) and Nq̄(Mn, ε) as equal in size as feasible. We base the choice
of the question on N(Mn, ε) rather than on the potentially smaller set Mn

on account of the possibility of errors committed by the assessment procedure
on earlier steps. These ideas will be implemented in a particular form of the
questioning function τ of the process (cf. Axiom [QM]).

14.3.2 Definition. We now make ε : N ∪ {0} → R+ ∪ {0} a function with
values varying with the size of the set of marked states. Denote by Tn the set
of all items q in Q which, on trial n, minimize the quantity

νq(Mn, k) =

∣∣∣∣∣∣Nq(Mn, ε(|Mn|))
∣∣− ∣∣Nq̄(Mn, ε(|Mn|))

∣∣∣∣∣∣.
(As before, we simplify the writing and take νq(K, j) to mean νq({K}, j.) We
say that the questioning function τ in Axiom [QM] is ε-half-split iff

τ(q,Mn) =
ιTn(q)

|Tn|
,

where ιA is the indicator function of the set A. Note in passing that if |Mn| = 1
and ε(1) = 0, or if Mn = ∅, then Tn = Q; in these cases, all the questions in
Q have the same probability of being chosen.

The assumption ε(1) = 1 will be central in the sequel, together with the
closely related concept of fringe KF of a state K. This concept was defined
in 4.1.6 as the union KF = KI ∪KO, where KI and KO are respectively the
inner and outer fringes of K, that is:

KI = {q ∈ K K \ {q} ∈ K}, (14.2)

KO = {q ∈ Q \K K ∪ {q} ∈ K}. (14.3)
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14.3.3 Theorem. For any state K, any q ∈ KF and any r ∈ Q \ KF, we
have:

νq(K, 1) = |N(K, 1)| − 2 < νr(K, 1) = |N(K, 1)|. (14.4)

Moreover, if KF 6= ∅ and the questioning function τ is ε-half-split with
ε(1) = 1, then for any positive integer n we have

P
(
Qn = q Kn,Mn = {K},Wn−1

)
=

{
1/|KF| if q ∈ KF;

0 otherwise,
and so

P
(
Qn ∈ KF Kn,Mn = {K},Wn−1

)
= 1.

Proof. Since the second assertion follows readily from the first one, we only
establish Equation (14.4). We first deal with νq(K, 1). We consider two cases.
Suppose q ∈ KF. If q ∈ K, then there is a state L such that K = L∪{q} and
Nq̄(K, 1) = {L}. This yields

νq(K, 1) = |N(K, 1)| − 2. (14.5)

If q /∈ K, then the same equality obtains with this time L = K ∪ {q} and
Nq(K, 1) = {L}.

Turning to νr(K, 1), suppose that r ∈ Q \ KF. We have also two cases:
r /∈ ∪N(K, 1) or r ∈ ∩N(K, 1). In the first case, we get

Nr̄(K, 1) = N(K, 1), Nr(K, 1) = ∅
and

νr(K, 1) = |N(K, 1)|. (14.6)

The second case yields

Nr(K, 1) = N(K, 1), Nr̄(K, 1) = ∅, (14.7)

yielding again Equation (14.6). The first assertion of the statement follows
from Equations (14.5) and (14.6).

We now turn to the marking function. The idea here is that suggested by
Example 14.1.1, namely, we retain as marked states on trial n+ 1 only those
states in a δ-neighborhood of Mn which are consistent with the question asked
and the response observed. Thus, with probability one,

Mn+1 = Ny(Mn, δ), (14.8)

where

y =

{
q if the answer to q is correct

q̄ otherwise.
(14.9)

The value of the parameter δ in Equation (14.8) may vary with the size of Mn.
It may also depend upon whether the question Qn belongs to at least one of
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the marked states in Mn and whether the response was correct. This generates
the four cases in the next definition. The motivation for enlarging the family
of marked states is the same as before: the true state could have escaped the
actual collection of marked states, and we would like the procedure to correct
this omission.

14.3.4 Definition. Let δ1, δ2, δ̄1, and δ̄2 be four functions defined on the
nonnegative integers, with nonnegative real values. The marking function µ
of Axiom [M] is selective with parameter δ = (δ1, δ2, δ̄1, δ̄2) if it satisfies:

µ(Mn+1,Rn,Qn,Mn) =

{
1 in the four cases (i)–(iv) below;

0 in all other cases.

(i) Rn = 1, Qn = q ∈ ⋃Mn, and Mn+1 = Nq
(
Mn, δ1(|Mn|)

)
;

(ii) Rn = 1, Qn = q /∈ ⋃Mn, and Mn+1 = Nq
(
Mn, δ2(|Mn|)

)
;

(iii) Rn = 0, Qn = q ∈ ⋃Mn, and Mn+1 = Nq̄
(
Mn, δ̄1(|Mn|)

)
;

(iv) Rn = 0, Qn = q /∈ ⋃Mn, and Mn+1 = Nq̄
(
Mn, δ̄2(|Mn|)

)
.

Note that this requirement could be generalized by letting the functions
δ1, δ2, δ̄1, and δ̄2 depend on the question q in Q.

We now apply Definition 14.3.4 in the case in which some state K0 is the
unit support and Mn = {K}, for some K, K0 ∈ K.

14.3.5 Theorem. Suppose that the marking rule µ is selective with param-
eter δ = (δ1, δ2, δ̄1, δ̄2), and moreover

δ1(1) = δ̄2(1) = 0, δ2(1) = δ̄1(1) = 1. (14.10)

Writing An(K,K0) for the joint event (Mn = {K},Kn = K0), we have then

P
(
Mn+1 = {K} Qn ∈ KI ∩K0, An(K,K0)

)
= 1− βQn

;

P
(
Mn+1 = {K \Qn} Qn ∈ KI ∩K0, An(K,K0)

)
= βQn

;

P
(
Mn+1 = {K} Qn ∈ KI \K0, An(K,K0)

)
= ηQn

;

P
(
Mn+1 = {K \Qn} Qn ∈ KI \K0, An(K,K0)

)
= 1− ηQn ;

P
(
Mn+1 = {K ∪Qn} Qn ∈ KO ∩K0, An(K,K0)

)
= 1− βQn ;

P
(
Mn+1 = {K} Qn ∈ KO ∩K0, An(K,K0)

)
= βQn

;

P
(
Mn+1 = {K ∪Qn} Qn ∈ KO \K0, An(K,K0)

)
= ηQn

;

P
(
Mn+1 = {K} Qn ∈ KO \K0, An(K,K0)

)
= 1− ηQn

.

The proof is left as Problem 5. Note also that if KF 6= ∅ and the questioning
function is ε-halfsplit with ε(1) = 1, Theorems 14.3.3 and 14.3.5 allow us
to calculate all the possible transition probabilities from Mn = {K} to
Mn+1 = {K ′}.
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14.4 Markov Chains Terminology

Our results concern Markov chains. To avoid ambiguities, we will use the term
m-state to refer to the Markov states of these chains, reserving the expression
‘(knowledge) states’ for the elements of K. For Markov chain concepts, we
point the reader to Kemeny and Snell (1960), Chung (1967), Feller (1968),
Parzen (1994) or Barucha-Reid (1997). Except when otherwise indicated, we
follow the somewhat idiosyncratic terminology of Kemeny and Snell (for ex-
ample, we say ‘ergodic’ rather than ‘recurrent’ or ‘persistent’).

Here is a brief glossary of the terminology, recalling some concepts encoun-
tered in Chapter 11.

14.4.1 Definition. Let (Xn)n∈N be a Markov chain on a finite set E of
m-states, with transition probability matrix M = (Mij)i,j∈E and initial prob-
ability distribution v = (vi)i∈E ; thus

vi = P(X1 = i), i ∈ E;

Mij = P
(
Xn+1 = j Xn = i

)
, n = 1, 2, . . .

An m-state j is reachable from an m-state i when there is a natural number
n such that (Mn)ij > 0 (note that j is not necessarily reachable from itself).
A subset C of E is a closed set of m-states if any m-state outside C cannot be
reached from any m-state in C. An m-state is absorbing when it is the single
element of a closed set. A class (in a Markov chain) is a subset C of E which
is maximal for the property that, for any two m-states i, j in C, j is reachable
from i; in particular, j is reachable from itself.

Because of the finiteness of E, we may define an ergodic m-state as an
m-state that belongs to some closed class. A closed class is sometimes called
an ergodic set. An m-state which is not ergodic is transient.

The chain (Xn) is regular when all its m-states form a single class and
(Xn) is not periodic, the latter requirement meaning that (Mn)ij > 0 for
some n ∈ N and all i, j ∈ E. Finally, a probability distribution p on E is
stationary (or invariant) when

∑
i∈E piMij = pj .

It is well-known that if the chain (Xn) is regular, then it has a unique
stationary distribution p which is called the limit or asymptotic distribution,
with

pj = lim
n→∞

P(Xn = j) = lim
n→∞

∑
i∈E

vi(M
n)ij .

The limit distribution p does not depend on the initial probability distribution
v on E.
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14.5 Results for the Fair Case

As before, let K be a knowledge structure with finite domain Q. We suppose
that (Rn,Qn,Kn,Mn) is a stochastic assessment procedure parametrized by
π, τ , β, η and µ. We begin the investigation of its behavior with a simple
general result for the straight case (that is, both the error probability βq and
the guessing probability ηq are equal to zero for all questions q in Q).

14.5.1 Theorem. In the straight case, assume that there is only one true
state K0 and that the marking rule is selective. Then, for all n ∈ N, we have:

P(K0 ∈Mn+1 K0 ∈Mn) = 1. (14.11)

In other words, the set of all m-states containing K0 is a closed set of the
Markov chain (Mn).

To establish the result, it suffices to prove Equation 14.11, which is left
as Problem 6. We consider next a situation in which the parameters ε and δ
are chosen so as to narrow down quickly (during Phase 1, as we considered in
Example 14.1.1) the set of marked states.

14.5.2 Theorem. Suppose that the questioning rule is ε-half-split, that the
marking rule is selective with parameter δ, and that ε(j) = δk(j) = δ̄k(j) = 0
for k = 1, 2, and all integers j > 1. We have then

P
(
|Mn+1| < |Mn| |Mn| > 1

)
= 1. (14.12)

If moreover δ1(1) = 0, δ2(1) ≤ 1, δ̄1(1) ≤ 1, and δ̄2(1) = 0, then for some
natural number r we have for all n ≥ r

P(|Mn| ≤ 1) = 1. (14.13)

In particular, in the straight case, if δ2(1) = δ̄1(1) = 0 and K0 is the unit
support, then there is a positive integer r such that whenever n ≥ r,

P(Mn = {K0} K0 ∈M1) = 1, (14.14)

and

lim
n→∞

P(Mn = ∅) = 1 ⇐⇒ K0 /∈M1. (14.15)

In fact, the Markov chain (Mn) has exactly two absorbing m-states which are
{K0} and ∅.

Proof. Equation (14.12) results immediately from the axioms and the hy-
potheses. Since Mn is finite for every positive integer n, Equation (14.13)
follows. Applying Theorem 14.5.1 gives (14.14), from which (14.15) follows
easily.
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The assumption δk(1) = δ̄k(1) = 0 practically locks the set of marked
states as soon as not more than one such state remains. Thus, the unit support
is either found quickly if it belongs to M1, or missed otherwise. We now study
a more flexible approach that allows in Phase 2 a single marked state K to
evolve in the structure, thus making possible a gradual construction (in the
straight case) or approximation (in the fair case) of the unit support by K.
For convenience, we give below a label to this set of conditions. Notice the
requirement ε(1) = 1 which was motivated in Example 14.1.1 and allows only
small changes of the single marked state K.

14.5.3 Definition. Let (Rn,Qn,Kn,Mn) be a stochastic assessment proce-
dure parametrized by π, τ , β, η and µ, with an ε-half-split questioning function
and a marking function which is selective with parameter δ. Suppose that the
following conditions are satisfied:

(i) the knowledge structure (Q,K) is a well-graded space;
(ii) ε(1) = 1 and ε(n) = 0 for n > 1;
(iii) δ = 0 except in two cases: δ2(1) = 1, and δ̄1(1) = 1.

Then (Rn,Qn,Kn,Mn) is called unitary.

14.5.4 Convention. In the rest of this section, we consider a fair, unitary
stochastic assessment procedure (Rn,Qn,Kn,Mn) in the sense (and with
the notation) of Definition 14.5.3. We assume that there is a unique support
K0; accordingly, the certain event Kn = K0 will not be mentioned in the
statement of results.

Terms such as ‘m-state’ and ‘ergodic set’ refer to the Markov chain Mn,
which is our principal object of investigation. This chain thus satisfies Equa-
tions (14.12) and (14.13). As soon as some state K remains the single marked
state (which is bound to happen in view of Theorem 14.5.2), question Qn

will be drawn in the fringe of K. This fringe KF is nonempty because K is
well-graded (cf. Theorem 4.1.7(iv)). We first give the possible transitions from
Mn = {K}, leaving the proof to the reader (see Problem 8).

14.5.5 Theorem. There is a natural number n0 such that for all n ≥ n0

P(|Mn| = 1) = 1. (14.16)

Moreover, for any natural number n, we have

P(|Mn+1 = 1| |Mn| = 1) = 1.

More precisely, with

A = |KO \K0|+
∑

q∈KO∩K0

βq +
∑

q∈KI∩K0

(1− βq),

we get
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P
(
Mn+1 = {K ′} Mn = {K}

)
=

(1/|KF|)(1− βq) if K ′ = K ∪ {q}, with q ∈ KO ∩K0,

(1/|KF|) if K ′ = K \ {q}, with q ∈ KI \K0,

(1/|KF|)βq if K ′ = K \ {q}, with q ∈ KI ∩K0,

(1/|KF|)A if K = K ′,

0 in all other cases.

In particular, we thus have for any K * K0,

P
(
Mn+1 = {K} Mn = {K0}

)
= 0.

In the straight case, we have βQn = 0 which implies that with probability
one we have d(Mn+1,K0) ≤ d(Mn,K0) when |Mn| = 1. In general, if Ψ is a
nonempty family of subsets of Q and K a subset of Q, we define as customary

d(Ψ,K) = min{d(K ′,K) K ′ ∈ Ψ}.

14.5.6 Theorem. In the straight case, for any choice of a nonempty M1,
we have

lim
n→∞

P
(
Mn = {K0}

)
= 1. (14.17)

Moreover, for any state K with d(K,K0) = j > 0 and any `, n ∈ N, we have

P
(
M`+n = {K0} Mn = {K}

)
≥

`−j∑
k=0

(
j + k − 1

k

)
λj (1− λ)k (14.18)

where λ is defined by

λ = min
|(K 4K ′) ∩KF|

|KF| ,

for K,K ′ ∈ K with K 6= K ′.

Proof. We first prove Equation (14.18). To this end, we consider a sequence
of Bernoulli trials with ‘success’ meaning a step of size one towards K0. Thus,
a success on trial n means that d(Mn+1,K0) = d(Mn,K0) − 1. If the event
Mn = {K} is realized, and Kn = K0 with d(K0,K) = j, then at least j
successes are necessary in the following ` trials to achieve M`+n = {K0}, with
the probability of each success being at least λ. The wellgradedness implies
that λ > 0. Now, in a sequence of Bernoulli trials each having a probability
of success equal to λ, the number j + k of trials required to achieve exactly j
successes has a probability specified by(

j + k − 1

k

)
λj (1− λ)k.
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Thus, k is a value of a random variable, which is distributed as a negative
binomial with parameters j and λ. Consequently, Equation (14.18) follows
from Equation (14.16). Since the r.h.s. of (14.18) tends to 1 as ` tends to ∞,
Theorem 14.5.5 implies Equation (14.17).

We also have the following result:

14.5.7 Theorem. There exists an integer n0 > 0 such that P(|Mn| = 1) = 1
for any n ≥ n0. Moreover, the Markov chain (Mn) has a unique ergodic set
E0 which contains {K0} and possibly some m-states {K} such that K ⊆ K0,
but no other m-states. If, in addition βq > 0 for all q ∈ K0, then E0 is in fact
the family of all those m-states {K} such that K ⊆ K0.

Proof. By Equation (14.16) of Theorem 14.5.5, an ergodic m-state contains
exactly one knowledge state. Using the transition probabilities described in
Theorem 14.5.5 and the wellgradedness of K, we see that it is possible to reach
the m-state {K0} from any m-state {K}. This clearly implies the uniqueness
of the ergodic set E0, with moreover {K0} ∈ E0. The remaining assertions
also follow readily from Theorem 14.5.5.

14.6 Uncovering a Stochastic State: Examples

Most of the results presented in the previous section suppose a unit support.
The case in which the probability distribution π on the family K is not con-
centrated on a single state is also worth considering.

In an ideal situation, the Markov chain Mn admits a unique ergodic set ξ
that contains supp(π), the support of the probability distribution π. A sensible
strategy is then to analyze the statistics of occupation times of the m-states
in ξ in order to assess the probability π(K) of each true state K. (In practice,
because we cannot ask many questions, we aim only at ballpark estimates of
these probabilities.) This strategy will be illustrated in two examples. The
first one is based on a discriminative chain K of states. Its items are thus
linearly ordered1.

In all the examples of this section, we consider a fair, unitary stochastic
assessment procedure (cf. Definitions 14.2.2 and 14.5.3).

14.6.1 Example. Suppose that K is a chain of states

L0 = ∅, L1 = {q1}, . . . , Lm = {q1, . . . , qm}.

By Equation (14.13) of Theorem 14.5.2, all the m-states of the Markov chain
(Mn) containing more than one knowledge state are transient. Any m-state
containing a single true state is ergodic. (All assertions left unproved in this

1 Needless to say, this special case could have been treated by other methods (such
as “tailored testing”; see Lord, 1974; Weiss, 1983).
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example are dealt with by Problem 9.) The same holds for any m-state {K}
such that K ′ ⊆ K ⊆ K ′′ for two true states K ′ and K ′′. If βq > 0 for each
q in ∩ supp(π), then {K} is an ergodic m-state for any state K included in
a true state. On the other hand, if βq = 0 for all q ∈ ∩ supp(π), then the
only ergodic m-states are of the form {K} with K being a state between
two true states. Thus, in the straight case, if the true states form a subchain
Lj , Lj+1, . . . , Lk of K for some j, k with 0 ≤ j ≤ k ≤ m, the ergodic m-
states are essentially the true states. As indicated by the example below, the
statistics of the occupation times of the states in the recurrent class can be
used to estimate the probabilities π(K). Suppose that we have exactly three
true states Li−1, Li, and Li+1, with 1 < i < m. Thus, setting

πi−1 = π(Li−1) and πi+1 = π(Li+1),

we assume π(Li) = 1−πi−1−πi+1 > 0, and πi−1 > 0, πi+1 > 0. Suppose that
we also have βq = 0 for any q ∈ Q. (We are thus in the straight case.) From
these assumptions, it follows that there are three ergodic m-states, namely
{Li−1}, {Li}, and {Li+1}. The probabilities for the observable variables on
trial n are given by the tree-diagram of Figure 14.2 for the transient m-states
{Lj}, for 0 < j < i − 1, and {Lk}, for i + 1 < k < m (we leave the cases of
{∅} and {Q} to the reader). A similar tree-diagram for the ergodic m-states
is provided in Figure 14.3. The possible transitions between all m-states of
the form {K}, with their probabilities, are shown in Figure 14.4.

Lj

qj

qj+1

1

1

Lj

Lj+1

0.5

0.5

1

1

1

1

Lk

qk

qk+1

1

1

Lk−1

Lk

0.5

0.5

1

1

1

1

Figure 14.2. Probabilities of the observable variables on trial n in Example 14.6.1,
when leaving a transient state {Lj} or {Lk}, for 0 < j < i− 1 or i+ 1 < k < m.
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Asymptotically, we have a Markov chain on the three m-states Li−1, Li,
and Li+1, which is regular. Setting

pj = lim
n→∞

P(Mn = {Lj}),

we thus have pj 6= 0 iff i − 1 ≤ j ≤ i + 1. The stationary distribution of this
chain on three states is the unique solution to the following system of linear
equations:

(pi−1, pi, pi+1) ·



1 + πi−1

2

1− πi−1

2
0 1

πi−1

2

2− πi−1 − πi+1

2

πi+1

2
1

0
1− πi+1

2

1 + πi+1

2
1


= (pi−1, pi, pi+1, 1).

As the first equation gives

1 + πi−1

2
pi−1 +

πi−1

2
pi = pi−1,

Figure 14.3. Probabilities for the
observable variables at trial n in
Example 14.6.1, when leaving an er-
godic state {Li−1}, {Li}, or {Li+1}.
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we infer
πi−1 =

pi−1

pi−1 + pi
.

A similar computation with the third equation yields

πi+1 =
pi+1

pi + pi+1
.

To be complete, we also give

π(Li) =
p2
i − pi−1pi+1

pi + pi−1pi+1
.

Since in this case the asymptotic probabilities of the knowledge states can
be estimated from the proportions of visits to the m-states in any realization,
we have the possibility of obtaining at least a rough estimate of the unknown
probabilities π(Lj) from the data of any particular subject.

Our next example shows that these techniques are not restricted to the
case of a chain of states.

Figure 14.4. Transitions with
their probabilities between the m-
states of the form {Lj}, see Exam-
ple 14.6.1.
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14.6.2 Example. Let Q = {a, b, c, d, e} be a set of five items, with a knowl-
edge space K derived from the partial order in Figure 14.5 (a). We thus have

K =
{
∅, {c}, {e}, {b, c}, {c, e},{a, b, c}, {b, c, e},

{c, d, e}, {a, b, c, e}, {b, c, d, e}, Q
}
.

Suppose that the straight case holds, and that {c} and {e} are the only
true states. Setting α = π(e), we thus have π(c) = 1 − α. As we assume
that the assessment procedure is straight, we conclude that there is only one
ergodic set, namely

{
{∅}, {{c}}, {{e}}, {{c, e}}

}
.

0.5

(1- )/2

1 - 2 0.75

(b)

a

c

d

e

(a)

{c,e}{c}

{e}

b α

(1- )/2α

(1- )/2α

(1- )/4α

/4α

α

/3α

/3α

/3α

/2α

Figure 14.5. (a) The Hasse diagram of the partial order in Example 14.6.2.
(b) Transition probabilities among the four ergodic m-states in that Example. (One
layer of brackets is omitted, i.e. {a} stands for {{a}}.)

Figure 14.5 (b) provides the transition probabilities among the four ergodic
m-states. Setting, for {K} ∈ {{∅}, {{c}}, {{e}}, {{c, e}}},

p(K) = lim
n→∞

P
(
Mn = {K}

)
,

we obtain for example

p(∅) =
1

2
p(∅) +

1

3
αp({c}) +

1

2
(1− α)p({e}).

Solving for α, we get

α =
p(∅)− p({e})

(2/3)p({c})− p({e}) .

Here again, the unknown quantity α can be estimated from the asymptotic
probabilities of the ergodic m-states of (Mn), via the proportions of visits of
the m-states in any realization of the procedure. In the next section, we con-
sider some circumstances in which such an estimation is theoretically feasible.

We now turn to an example in which the knowledge structure is not de-
scribed accurately at the start. For instance, the student’s state could have
been omitted.
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14.6.3 Example. With the same structure as in Example 14.6.2, we suppose
that the subject has only mastered items c and d. Thus, the ‘knowledge state’
of that student is {c, d} which is not a state of K. When running a fair, unitary
procedure to assess the knowledge of this subject, we assume that the response
is correct if questions c or d were asked, and incorrect otherwise. From an anal-
ysis of this case, it turns out that (Mn) is a Markov chain; Figure 14.6 displays
its reachability relation, together with the transition probabilities. There are
two absorbing m-states, namely {{c}} and {{c, d, e}}, which are marked by
the thick red frames in the figure. Thus, depending on the starting point, the
chain will end remaining in one of these two m-states with probability one.
As a conclusion, we see that observing one realization of the process may
lead the observer to diagnose (unavoidably) an incorrect state, but one that
is nevertheless not too far from the student’s actual state: we have

d({c}, {c, d}) = d({c, d, e}, {c, d}) = 1.

Figure 14.6. Possible transitions among the m-states from Example 14.6.3. (One
layer of brackets is omitted.)

14.7 Intractable Cases

The results of this section were included for completeness. They are revealing
without being very useful from the standpoint of the applications because
they put too stringent conditions on the knowledge structure. We deal with
the case in which the subject’s knowledge state may be randomly varying
in the course of the procedure according to a fixed probability distribution
π on the knowledge structure K on a domain Q = {q1, . . . , qk}. Thus, the
distribution π is specific to that subject. An exemplary result is that, for the

Q

{b,c,e} {a,b,c,e}

{b,c,d,e}

{c,e}{e}

{b,c} {a,b,c}{c}

{c,d,e}
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probability distribution π to be recoverable by a stochastic assessment process
in the sense of this chapter, the number of nonempty states of K cannot exceed
the number of items. This could happen if the knowledge structure K is a
discriminative maximal chain

∅ ⊂ {q1} ⊂ {q1, q2} ⊂ . . . ⊂ {q1, . . . , qk}.

Such a chain is the only possibility if we require the knowledge structure to
be a learning space. (Problem 14 asks the reader to prove this fact.)

We suppose that the error probabilities βq and guessing probabilities ηq
are zero for all q ∈ Q (straight case). The observable probabilities ρ(q) of
correct answers to questions q are then completely determined by the subject’s
distribution π through the formula:∑

K∈Kq

π(K) = ρ(q), for q ∈ Q (14.19)

(where as before Kq = {K ∈ K q ∈ K}). This is a system of linear equations
in the unknown quantities π(K), and with the constant terms ρ(q) in the right
hand sides. Notice that the coefficients of the unknowns take only the values
0 or 1.

14.7.1 Definition. The incidence matrix of a collection K of subsets of the
finite domain Q of questions is the matrix M = (Mq,K) whose rows are
indexed by items q in Q, columns are indexed by states K in K, and

Mq,K =

{
1 if q ∈ K,
0 otherwise.

Let ρ = (ρ(q))q∈Q be a vector of correct response probabilities. We ask: under
which condition does there exists exactly one vector solution π = (π(K))
(with K ∈ K) to Equation (14.19) that moreover satisfies π(K) ≥ 0 and∑
K∈K π(K) = 1? In the next theorem, we suppose that some vector solution

π̂ to Equation (14.19) exists, with 0 < π̂(K) < 1 for all K ∈ K. The theorem
specifies the condition for the uniqueness of such a solution.

14.7.2 Theorem. In the straight case, a strictly positive probability distri-
bution π̂ on the knowledge structure K can be recovered from the vector of
correct response probabilities through Equation (14.19) if and only if the rank
of the incidence matrix of the collection K• = K \ {∅} is equal to |K•|.

Proof. Denote by Λ the simplex formed by all the probability distributions
π on K; thus Λ lies in the vector space RK, where a vector has one real
coordinate for each element in K. The strictly positive probability distribution
π̂ mentioned in the statement of the theorem is a relative interior point of Λ.
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Notice that the vector subspace S0 consisting of all solutions π (without a
positive condition) to the homogeneous system∑

K∈Kq

π(K) = 0, for q ∈ Q, (14.20)

always contains the vertex of Λ corresponding to the distribution having all
its mass concentrated on the empty set. Hence this subspace S0, which con-
tains also the origin of RK, is never parallel to the hyperplane defined by∑
K∈K π(K) = 1.

The affine subspace S of all solutions to Equation (14.19) is the translate
of S0 passing through the point π̂. As π̂ is a relative interior point of Λ, we
see that π̂ is uniquely determined iff the dimension of S0 is 1. This happens
exactly if the incidence matrix of K has rank |K| − 1, or equivalently the
incidence matrix of K• has rank |K•|.

14.7.3 Remark. Theorem 14.7.2 covers the case in which the support supp(π)
equals K. Dropping this condition but assuming a fixed support supp(π) con-
taining ∅, the same argument shows that we cannot recover any latent dis-
tribution π from its induced response probabilities ρ when the rank of the
incidence matrix of supp(π) is not equal to |supp(π)| − 1.

These considerations lead to the following problem: characterize those col-
lections K of nonempty subsets of a finite domain Q for which the incidence
matrix has rank over the reals equal to |K|. As mentioned in the introduc-
tory paragraph of this section, an obvious necessary condition is |Q| ≥ |K|,
that is: for any probability distribution on K to be recoverable by a stochas-
tic assessment procedure, the number of nonempty states cannot exceed the
number of questions. While many types of families satisfy this condition—see
below—only one satisfies the axioms of a learning space, namely: a maximal
discriminative chain (cf. Problem 14).

14.7.4 Theorem. If P is a partial order on the finite domain Q, then the
family

I =
{
{q ∈ Q qPr} r ∈ Q

}
of its principal ideals has an incidence matrix of rank |Q|.

Proof. By a well-known result of Szpilrajn (1930), there exists a linear ex-
tension T of P (see also Trotter, 1992). List the columns of the incidence
matrix in the order of T . Since the principal ideal generated by an item r in
Q is the first element of I that contains r, the column indexed by r is linearly
independent from the preceding columns.
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14.8 Original Sources and Related Works

This chapter closely follows the paper by Falmagne and Doignon (1988b). The
combinatorial part of this paper was presented in Chapter 4.

Problems

1. Work out several other realizations of the assessment procedure in Exam-
ple 14.1.1, by making various choices of question when possible.

2. By carefully selecting an exemplary knowledge structure different from
those encountered in the chapter, explain why the wellgradedness assump-
tion is crucial. Give examples in which the Markov chain (Mn) can reach
an m-state of the form {K}, with K not a true state, and remain there
with probability 1. Use your examples to find out which results in this
chapter remain true for knowledge structures that are not well-graded.

3. Show that the various processes mentioned at the end of Definition 14.2.2,
such as (Mn) and (Qn,Mn), are indeed Markov chains.

4. Prove the following assertions made on page 279 (just after Defini-
tion 14.3.1. For y = q or y = q̄, we always have Ny(Ψ, 0) = Ψy ⊆ Ψ ,
the last inclusion being strict except in two cases: (i) y = q ∈ ⋂Ψ ; or (ii)
y = q̄ and q /∈ ⋃Ψ . Also, Ny(Ψ, 0) is empty if y = q /∈ ⋃Ψ , or y = q̄ and
q ∈ ⋂Ψ .

5. Provide proofs for the various cases of Theorem 14.3.5.

6. Prove Equation (14.11).

7. Assume a unitary assessment procedure is ran on a well-graded knowledge
structure. Is the following statement true or false: If there are two true
states incomparable for inclusion, then the Markov chain (Mn) has at
least three ergodic m-states? Prove your answer.

8. Give a proof of Theorem 14.5.5.

9. Establish all the assertions left unproved in Example 14.6.1.

10. Analyze the case of Example 14.6.2 in which the support is a different
family of states, for example containing three states.

11. Analyze the case of Example 14.6.3 in which the student’s knowledge is
another subset of Q, also not belonging to K.

12. Evaluate the computer storage needed to implement the stochastic assess-
ment procedure from this chapter (assuming student’s answers are col-
lected at the keyboard). Compare the memory required with that needed
by the procedure from Chapter 13.
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13. Determine all the collections K of nonempty subsets on a two-element set
whose incidence matrix has rank over the reals equal to 2. Try to find
(up to isomorphism) all the similar collections on a three-element domain
with rank 3.

14. In Section 14.7 (Theorem 14.7.2) we proved that if the subject’s knowledge
state varies randomly across trials according to a fixed distribution π
on the knowledge structure K, then π is recoverable by an stochastic
assessment structure in the sense of this chapter only if the number of
nonempty states does not exceed the number of items. Prove that the
only type of learning spaces satisfying this condition is a chain.
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Building a Knowledge Space

In the two preceding chapters, we have described assessment procedures for
uncovering the knowledge state of a student in a scholarly topic. Such a knowl-
edge state is one among possibly many states forming a knowledge structure
for the topic. We now turn to the problem of building a knowledge structure
in practice. In this chapter, we deal with the case of knowledge spaces, that is,
union-closed knowledge structures. Methods for building learning spaces are
considered in Chapter 16. They are based in part on the techniques of this
chapter, which is sensible because learning spaces are particular knowledge
spaces (cf. Theorem 2.2.4).

Our basic tool for building a knowledge space, the ‘QUERY’ routine, is due to
Koppen (1993) and Müller (1989) (cf. also Dowling, 1994). The QUERY routine
proceeds by building first an entailment, in the sense of Definition 7.1.4. The
input to the routine can be a collection of responses of experts to particular
‘queries.’ This input can also take the form of student assessment statistics
providing essentially the same nuggets of information regarding the structure
(see Remark 15.4.7 for details). The output is the knowledge space derived
from the entailment (cf. Theorem 7.1.5 and Definition 7.1.6). This knowledge
space is thus not necessarily a learning space.

This chapter has three main parts. We begin by describing the QUERY

routine itself. We then discuss an application of QUERY reported by Kambouri,
Koppen, Villano, and Falmagne (1994) (see also Kambouri, 1991). The experts
questioned by the routine were four experienced teachers and the experimenter
herself, Maria Kambouri. The items were taken from the standard high school
curriculum in mathematics. Our presentation of this study follows closely
Kambouri et al. (1994). We will see that this application of the QUERY routine
was only partly successful. One explanation may be found in the nature of the
task, which requires painstaking work over dozens of hours spread over several
days. It may be difficult for an expert to be consistently reliable throughout.
The work of Cosyn and Thiéry (2000) attempts to palliate this defect by
postponing the implementation of the responses to some query until they
are confirmed by later responses. Otherwise, those responses are discarded.
The result of their work is the PS-QUERY routine (for ‘Pending-Status-QUERY),
which we describe in the last part of the chapter.

J.-C. Falmagne, J.-P. Doignon, Learning Spaces, 
DOI 10.1007/978-3-642-01039-2_15, © Springer-Verlag Berlin Heidelberg 2011 
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15.1 Background to the QUERY routine

When the input to the QUERY routine comes from experts in the domain, their
opinions take the form of responses to queries such as:

[Q1] Suppose that a student under examination has just provided wrong
responses to all the questions in some set A. Is it practically certain
that this student will also fail item q? Assume that the conditions are
ideal in the sense that errors and lucky guesses are excluded.

The experts are assumed to be capable of faithfully answering such queries1.
The set A appearing in [Q1] will often be called an antecedent set. This type
of query may be denoted by (A, q), and abbreviated as: Does failing all the
questions in some antecedent set A entail failing also item q?

We have encountered queries such as [Q1] before. In Chapter 7, they were
the motivation for the concepts of entailments and entail relations. There, we
established the equivalence of two seemingly quite different concepts: on the
one hand the knowledge spaces, and on the other hand the entailments for Q.
The latter are the relations P ⊆ (2Q \ {∅})×Q that satisfy the following two
conditions: for all q ∈ Q and A, B ∈ 2Q \ {∅},

(i) if q ∈ A, then APq;
(ii) if APb holds whenever b ∈ B, and moreover BPq, then APq

(see Definition 7.1.4). The unique entailment P derived from some particular
space K on Q is defined by the formula

APq ⇐⇒ (∀K ∈ K : A ∩K = ∅ ⇒ q /∈ K) , (15.1)

where A ∈ 2Q \ {∅} and q ∈ Q (cf. Theorem 7.1.5). The unique knowledge
space K on Q deriving from a given entailment P on Q is defined by:

K ∈ K ⇐⇒ (∀(A, q) ∈ P : A ∩K = ∅ ⇒ q /∈ K) . (15.2)

It is clear from (15.1) that, for a given knowledge structure K, the responses
to all the queries of the form [Q1] are determined. By hypothesis, the stu-
dent mentioned in query [Q1] must be in some state not intersecting the
antecedent set A. If none of those states having an empty intersection with A
contains q, the expert responds ‘yes’; otherwise, he responds ‘no.’ Conversely,
if the responses to all such queries are given, then by Theorem 7.1.5 the unique
knowledge space K specified by Equation (15.2) obtains. In the terminology
of Definition 7.1.6, we say then that this particular knowledge space is derived
from the given entailment. These considerations suggest a practical technique
for constructing a knowledge space. We suppose that, when asked a query of
the form [Q1], an expert relies (explicitly or implicitly) on a personal knowl-
edge space to manufacture a response. It thus suffices to ask the expert enough

1 A test of this assumption is reported in Section 15.3.
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queries of the form [Q1] to uncover his latent knowledge space. However, an
obvious difficulty is that the number of possible queries of the form [Q1] is
considerable: if Q contains m items, then there are (2m− 1) ·m queries of the
form [Q1]. In practice, however, only a minute fraction of these queries need
to be asked because many responses to new queries are either trivial or can be
inferred from previous responses. The inference mechanism lies at the core of
the QUERY procedure and is one of the features that makes QUERY applicable
in real-life situations.

To help the reader’s intuition, we first outline a näıve approach to the
construction of a knowledge space from responses to queries. As usual we
denote by Q the domain (the set of items), which we assume in this chapter
to be finite.

15.1.1 Algorithm (A naive querying algorithm).

Step 1. Draw up the list of all the subsets of Q.

Step 2. Successively submit all the queries (A, q) of the form [Q1]. Whenever
a positive response APq is observed, remove from the list of remaining
subsets all the sets containing q and disjoint from A.

Step 2 implements the requirement captured by Equation (15.2). The
unique knowledge space consistent with the query responses is ultimately
generated by this procedure.

15.1.2 Example. An example of elimination of potential states by an appli-
cation of the näıve routine 15.1.1 is given in Table 15.1. The domain is the
set Q = {a, b, c, d, e}, and we suppose that only six queries led to positive
responses, namely:

{a}Pb, {e}Pa, {e}Pb, (15.3)

{a, d}Pc, {b, d}Pc, and {d, e}Pc. (15.4)

We have gathered the six positive responses APq according to the size of A. As
we will later see, QUERY relies heavily on such gathering by asking first all the
queries (A, q) with |A| = 1, then all those queries with |A| = 2, etc. Accord-
ingly, we say that QUERY proceeds by ‘blocks’: first Block 1, then Block 2, etc.
In general, we refer to responses APq with |A| = k as coming from Block k of
the QUERY routine. In this example, only Block 1 and Block 2 were needed to
construct the knowledge space. The elimination of potential states is marked
in Table 15.1 by the ‘×’ symbol. We see that three more states were eliminated
during the second block. The final states remaining at the end are indicated
by the symbol ‘

√
’.

The inclusion diagram of the power set of the set {a, b, c, d, e} is represented
in Figure 15.1, with the sets eliminated by the two blocks represented in the
ovals, shaded respectively in red and blue.
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Table 15.1. Elimination of potential states from the six responses listed in (15.3)
and (15.4). The symbol ‘×’ marks the states eliminated by one of these responses.
Thus, the response {a}Pb eliminates the set {b}, which is also eliminated by the
response {e}Pb. Many other sets are also eliminated by the two responses. The left
part of the table (in red) refers to Block 1 of the QUERY procedure, the right one (in
blue) to Block 2. The sets remaining after Block 1 or Blocks 1 and 2 are indicated
by the black symbol ‘

√
’ in the fifth and ninth columns of the table. Three more

states are eliminated in Block 2, namely {c}, {c, e}, and {a, c, e}.

{a}Pb {e}Pa {e}Pb {a, d}Pc {b, d}Pc {d, e}Pc
∅

√ √

{a} ×
{b} × ×
{c}

√
× × ×

{d}
√ √

{e}
√ √

{a, b} × ×
{a, c} × × ×
{a, d} ×
{a, e}

√ √

{b, c} × × × ×
{b, d} × ×
{b, e} ×
{c, d}

√ √

{c, e}
√

× ×
{d, e}

√ √

{a, b, c} × × ×
{a, b, d} × ×
{a, b, e}

√ √

{a, c, d} ×
{a, c, e}

√
×

{a, d, e}
√ √

{b, c, d} × ×
{b, c, e} × ×
{b, d, e} ×
{c, d, e}

√ √

{a, b, c, d} × ×
{a, b, c, e}

√ √

{a, b, d, e}
√ √

{a, c, d, e}
√ √

{b, c, d, e} ×
{a, b, c, d, e}

√ √
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Q

{a,b,c,d}

{a,b,c,e}

{a,b,d,e}

{a,c,d,e}

{b,c,d,e}

{a,b,c}

{a,b,d}

{a,b,e}

{a,c,d}

{a,c,e}

{a,d,e}

{b,c,d}

{b,c,e}

{b,d,e}

{c,d,e}

{a,b}

{a,c}

{a,d}

{b,c}

{c,d}

{b,d}

{b,e}

{a,e}

{c,e}

{d,e}

{a}

{b}

{c}

{d}

{e}

∅

Figure 15.1. In heavy black and white, the inclusion graph of the knowledge
space constructed in Table 15.1. The letter Q stands for the domain {a, b, c, d, e}.
The sets eliminated in Block 1 of the näıve QUERY routine (cf. 15.1.1) are marked in
red shaded ellipses, those eliminated in Block 2 in blue shaded ellipses.
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15.1.3 Comments on the naive algorithm. This approach suffers from
two algorithmic drawbacks. The first one is that listing all the subsets of
Q and reviewing all the potential queries become infeasible as soon as the size
m of Q grows large. Indeed, the number of subsets is exponential in m and
the number of queries super-exponential. The QUERY procedure described in
the next section avoids listing all subsets of Q by focusing solely on a clever
management of queries. This procedure also eliminates a second drawback of
the naive algorithm, which does not contain any mechanism for skipping re-
dundant responses. In fact, in most applications (especially those we observe
in real situations), a large fraction of the potential queries can be omitted.
There are various reasons for this.

For example, for q in A, failing all the items in the set A trivially implies
failing q. Hence the query (A, q) with q ∈ A always elicits the response ‘yes.’
Consequently, we should never ask such a query. (In any event, the ‘yes’ re-
sponses they would receive would not eliminate any subsets.) This cuts the
number of possible queries in half, down to 2m−1 · m (see Problem 1).

Note also that, from a positive answer to the query (A, q), we may imme-
diately infer that all queries (B, q) with A ⊆ B will also generate a positive
answer: this is easily derived from Equation (15.2) (Problem 2). Moreover,
all the sets that could be eliminated from a positive response BPq have al-
ready vanished on the basis of the positive response APq. Indeed, this elimina-
tion concerns all the sets S containing q and having a nonempty intersection
with B. Since S ∩ B = ∅ and A ⊆ B implies S ∩ A = ∅, a positive response
to the query (B, q) would not eliminate any new set. There is thus no reason
to let QUERY test for BPq. The query (B, q) is thus said to be superfluous (in
view of the query (A, q)), and so are all queries (A, q) with q ∈ A.

We shall see in Section 15.2 how QUERY is able to further decrease the
number of queries requiring submissions to the expert or confrontation with
data, thus making realistic applications possible.

15.2 Koppen’s Algorithm

Our discussion of the QUERY Algorithm will cover the main ideas. Full details
can be found in Koppen (1993).

We write (A1, q1), (A2, q2), . . . , (Ai, qi), . . . for the sequence of queries
submitted to the expert (or tested on existing data). The query (Ai, qi) asks
the expert whether a student failing all the items in the antecedent set Ai
will also fail qi (cf. Section 15.1). We denote by P

yes
i−1 and Pno

i−1 the subsets of
queries among (A1, q1), (A2, q2), . . . , (Ai−1, qi−1) that elicited a ‘yes’ or ‘no’
response, respectively (thus P

yes
i−1 ∩ Pno

i−1 = ∅); by convention, we set initially
P
yes
0 = Pno

0 = ∅. We sometime omit the index when the relevant information
is provided by the context (as in {e}Pyesa, for example). In the ideal situation
taken for granted here, the expert generates the responses from his latent
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entailment P (which is derived from his latent knowledge space) so that, for
any i = 1, 2, . . . ,

P
yes
i−1 ⊆ P, and Pno

i−1 ⊆ P, (15.5)

where P =
((

2Q \ {∅}
)
×Q

)
\P, the negation of P. (In general, however Pno

i−1

is a proper subset of the negation of P
yes
i−1.) Hence

APq ⇐⇒
{

there is a (latent) state containing q

and none of the items in A.
(15.6)

We now show how the QUERY routine is able to infer responses to some
queries from those given to other queries. Examining Columns 2–4 of Ta-
ble 15.1, we may check that all potential states that are eliminated by the
response {e}Pyesb are in fact also eliminated by the responses {a}Pyesb or
{e}Pyesa. A general explanation of the rationale for such eliminations is given
below. By convention, we abbreviate {p}Pq into pPq.

15.2.1 Examples of inferences. a) If the positive responses pPyesq and
qPyesr have been observed, the query ({p}, r) should not be asked because
the restriction of the (latent) relation P to item pairs is transitive (see Prob-
lem 3). In any event, the positive response pPyesr would not lead to any new
elimination of sets (Problem 3).

b) The transitivity of the relation P restricted to item pairs also permits
inferences to be drawn from negative responses. As in Example (a), we start
with the observation pPyesq, but then observe pPnor. The routine should not
ask whether failing q entails failing r since, by the above argument, a positive
response would lead to infer pPr, contradicting pPnor.

c) Obviously, inferences can also be drawn from other inferences. For ex-
ample, from pPyesq, qPyesr we infer pPr; if we then observe rPyess, we may
also infer pPs. In general, we repeat deriving inferences until no more pair can
be inferred.

d) Examples (a), (b) and (c) describe cases concerning pairs of items,
but can be generalized. Suppose that we have observed the positive responses
APyesp1, APyesp2, . . . , APyespk. Thus, failing all the items in the set A entails
failing also p1, p2, . . . , pk. Suppose moreover that the expert has provided the
positive response {p1, p2, . . . , pk}Pyesq. As P is an entailment, we may then
infer APq and omit the corresponding query.

The types of inferences we need are more easily specified in terms of entail
relations, as we proceed to do.

15.2.2 Entail relations. We recall from Chapter 7 (cf. Theorem 7.2.1 and
Definition 7.2.2) that for any entailment P ⊆ (2Q \{∅})×Q there is a unique

entail relation P̂ on 2Q \ {∅} which is defined by the equivalence:

AP̂B ⇐⇒ ∀b ∈ B : APb (A,B ∈ 2Q \ {∅}). (15.7)
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15.2.3 Convention. In the sequel, we shall drop the ‘hat’ specifying the
entail relation P̂ associated with an entailment P, and use the same notation
for both relations. As the entail relation extends the entailment in an obvious
way, this abuse of notation will never be a source of ambiguity. Note that in
practice we shall always write APq instead of AP{q}.

We pursue our analysis in terms of the entail relation P and its negation P.
Note that the inference

whenever APB and BPq, then APq (15.8)

follows directly from the transitivity of the entail relation P. The special case

pPq and qPr imply pPr

was introduced in Example 15.2.1 (a).

We give one last example.

15.2.4 Example. Condition (15.8) is logically equivalent to

whenever APB and APq, then BPq. (15.9)

Accordingly, when the expert has provided the positive responses coded as
APB and the negative response APq, the negative response BPq may be
inferred, and the corresponding query should not be asked.

15.2.5 Inferences. The five examples in 15.2.1 and 15.2.4 illustrate the types
of inferences used in the QUERY routine. We base the inferences on the four
rules given in Table 15.2, which can be derived from the transitivity of P and
the implication

APb and A ∪ {b}PC imply APC.

We leave the justification of these four rules to the reader (Problems 4 to 7).

Table 15.2. The four rules of inference [IR1]–[IR4] permitting the deletion of
redundant queries to the expert (see 15.2.5).

From we can infer when it has been established that

[IR1] APp BPq (A ∪ {p})Pq and BPA

[IR2] APp BPq APq and (A ∪ {p})PB
[IR3] APp BPq BPp and (B ∪ {q})PA
[IR4] APp BPq (B ∪ {q})Pp and APB
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As we indicated earlier, we repeatedely apply the inference rules of this
table until no more new query pair can be produced. Specifically, we denote
by Pi−1 and P−i−1 the collections of all pairs found, on any step up to i− 1, to

be in P and P, respectively. These collections are built by enlarging P
yes
i−1 and

Pno
i−1 via repeated applications of the inferences. We have thus P

yes
i−1 ⊆ Pi−1

and Pno
i−1 ⊆ P−i−1. We first enlarge P

yes
i−1 by applications of a property discussed

in Section 15.1.3, namely:

∀A ∈ 2Q \ {∅}, ∀p ∈ Q : p ∈ A⇒ APp. (15.10)

Thus, we begin by adding all pairs (A, p), with p ∈ A, to P
yes
i−1. We then manu-

facture Pi−1 and P−i−1 by repeated applications of the inferences of Table 15.2.
An efficient way for the algorithm to compute, on step i− 1, the relations

Pi−1 and P−i−1 proceeds as follows. First, initialize Pi−1 to Pi−2 ∪ P
yes
i−1 and

P−i−1 to P−i−2∪Pno
i−1, and then repeatedly apply the inferences to the resulting

relations until the latter are stabilized.

Table 15.3 summarizes the notation to be used in the description of the
QUERY procedure. In a computer implementation of QUERY, a single program
variable Pyes would be used with P

yes
i−1 denoting its successive values during

execution time. (A similar remark holds for each of Pno
i−1, Pi−1 and P−i−1).

Table 15.3. Summary of terms and notation for QUERY

positive negative

collected responses up to the (i− 1)-th query P
yes
i−1 Pno

i−1

all inferences from P
yes
i−1 and Pno

i−1 Pi−1 P−i−1

i-th query (Ai, qi)

It is clear that implementing these inference mechanisms should result in
a marked improvement on the näıve approach of Algorithm 15.1.1. In fact,
the new procedure to be defined shortly will skip all queries whose responses
can be anticipated. However, several other improvements can still be made.
We sketch three of them in the rest of this section.

The following lemma will be instrumental:

15.2.6 Lemma. For each i = 1, 2, . . . , the relation Pi−1 is an entailment.

Proof. Definition 7.1.4 for an entailment involves two conditions; we check
them in turn. First, APi−1p holds for any subset A of Q and any item p in A
because we added such a pair (A, p) to P

yes
i−1. Second, if A, B ∈ 2Q \ {∅} and

p ∈ Q, then
(BPa for all a ∈ A) and APp imply BPp.

This follows from the rule in first row of Table 15.2, by taking p = q (and
remembering that BPA means BPa for all a in A).
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15.2.7 Generating the space from the entailment table. The proce-
dure keeps track of the queries asked and the responses given in the form
of a subset-by-item table2. Just before the i-th query is submitted, the ta-
ble records for each pair (A, p) whether APi−1q, or AP−i−1q, or whether the
response to the query (A, p) is still unknown. Such a table conveys all the in-
formation required for constructing the knowledge space relevant to step i−1.
The reason for this lies in Lemma 15.2.6 and Theorem 7.1.5: the relation Pi−1

obtained at the completion of step i − 1 by the algorithm is an entailment,
from which a knowledge space is derivable.

This table contains (2m− 1)×m entries and may be inconveniently large.
As shown in the next subsection, however, the full table is redundant and
all its information can be recovered from a much smaller subtable, using the
inferences discussed above. We first explain here how the knowledge space can
be generated from the table, assuming that the full, final table recording the
relation P is available.

Each row of the table is indexed by a nonempty subset A ofQ. The columns
correspond to the items. For each row A, the entry in the cell (A, q) contains
either APq or APq. We set

A+ = {q ∈ Q APq} (15.11)

A− = {q ∈ Q APq}. (15.12)

Thus, A+ contains all the items that the subject would fail who is known to
have failed all the items in A. We have necessarily

A ⊆ A+, A+ ∩A− = ∅, and A+ ∪A− = Q.

It is easy to see that not only is the set A− a feasible knowledge state, but also
that any state K must be equal to some set A− defined as in Equation (15.12)
(cf. Equation (7.6) and Problem 2 in Chapter 7; see also Problem 9 at the
end of this chapter). Generating the knowledge space from the available table
is thus straightforward. Note that there is no need to invoke Equation (15.2).

If we replace P with Pi−1, the same explanation applies to the table ex-
isting before the production of the i-th query (all of P−i−1 and the missing

information must then be replaced with Pi−1).

15.2.8 Constructing a manageable subtable. As we have mentioned in
our discussion of Example 15.1.2, the subtable of inferences is organized into
blocks which are generated successively. Block 1 contains all the responses
of the expert to questions of the form “Does failing p entails failing q?” The
information in Block 2 concerns the generic question “Does failing both p1 and
p2 entails failing q?” In general, Block k is defined by the number k of items in
the antecedent set A involved in queries of type [Q1]: “Does failing all the items

2 Programmers may prefer more elaborate data structures, such as linked lists.
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in the set A entails failing also item q?” This numbering of the blocks reflects
the order in which the queries are asked to the expert by the QUERY routine.
In other words, the queries in Block 1 are asked first, then come the queries in
Block 2, and so on. This ordering of the queries is sensible. The routine starts
with the queries which are the easiest ones for the expert to resolve: Block 1
only involves two items and a possible relationship between the two. Block 2
concerns more difficult queries, with three items and the possible relationship
between two of these items, forming the antecedent set, and the third item.
As the block number increases, the expert’s judgements become gradually
more difficult. However, the data collected in the early blocks yield inferences
affecting later blocks, removing thus from the list of open queries some that
are among the most difficult for the expert to answer. The impact of these
inferences may be dramatic. For example, in the application described later
in this chapter, which involves 50 items, the final knowledge space of each
of the five experts was obtained in less than 6 blocks. Moreover, most of the
construction was already accomplished after 3 blocks (see Table 15.4)

The required queries in Block k are generated only after all the responses to
queries from previous blocks have been collected or inferred. The information
from these previous blocks is then used to construct the queries in the new
block whose response cannot be inferred from the responses (manifested or
inferred) from previous blocks. In practice, only a fraction of the total number
of queries with antecedent set of size k will remain in Block k. Note that this
does not apply to Block 1. Since this block is constructed from scratch, all
the queries with antecedent set of size one must be a priori considered. The
routine asks the queries of this block and draws inferences along the way.

The process terminates when the newly constructed block does not contain
any open query. This indicates that the subtable constructed so far contains
all the needed information to build the knowledge space corresponding to the
entailment (see Kambouri et al., 1994). This knowledge space is defined as the
collection of all sets A− = {p ∈ Q APp}, where A runs through the rows of
this subtable (cf. 15.2.7). We have not discussed here how the information in
the previous blocks determines which queries will appear in the new block, or
how the postponed inferences for the new block are found. All these specifics
are provided in Koppen (1993).

Figure 15.2 displays a flowchart representing the overall design of the al-
gorithm sketched above, which is by no means a complete account of the
subtleties presented in Koppen (1993)’s paper. By Block 0, we mean the ini-
tial empty block. In general, on step k, the variable Block is first used to
record all queries still to be asked which have an antecedent of size k. Execut-
ing the instruction “Construct” means “construct all the queries that were
not inferred at the previous instruction in the flowchart”, which in particular
means that all the positive and negative inferences with the new antecedent
size have to be computed.
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Set k=0 and Block empty

Increment k by 1 and
collect inferences with
antecedents of size k

(see text of 15.2.5)

Construct the new value of
Block (see text of 15.2.8)

Is Block empty?

Open question
left in Block?

Choose next query in Block

(see text of 15.2.9)

Record response
from expert or

from assessment statistics

Compute all inferences
for current Block

and update Block

Collect Space

from table
Stop

Yes

No

No

Yes

Figure 15.2. Overall design of the QUERY algorithm.
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Koppen (1993) describes further ways of reducing the amount of storage
needed by QUERY. Examining how the knowledge space is produced according
to Subsection 15.2.7, we see that the same state K = A− may be obtained
from different subsets A in Equation (15.11). There is a way of reducing the
number of queries (A, p) needing to be stored until the generation of the states
occurs, and this can even be harmonized with the block approach. Again, we
refer the reader to Koppen (1993)’s paper for details.

15.2.9 Choosing the next query. As we have seen in the preceding sub-
section, the order in which the queries are asked depends to a considerable
degree on the block structure of the procedure. Within a block, however, the
choice of the next query is arbitrary. Any of the remaining open queries can
be selected. We can take advantage of this latitude. In particular, it makes
sense to select the next query so as to minimize the number of remaining open
queries. Conceivably, this may be achieved by maximizing (in some sense) the
total number of inferences that can be made from the response to the queries.
Let us examine some possibilities along this line.

Since it is difficult to look more than one step ahead, the choice of a query
by the routine is only guided by the number of inferences that would be derived
if the query was asked at that moment. Because the inference rules are only
applied in the current block (see 15.2.7), “total number of inferences” in the
previous sentence is to be interpreted with this qualification. However, even in
this restricted sense, we do not know how many inferences a query will yield,
because we do not know what response the expert will give. The inferences
following a positive response will differ from those after a negative response.
Accordingly, in the sequel, we take into consideration, for any potential new
query, the two classes of inferences associated with the positive or negative
responses to the query, and more specifically, of the numbers of inferences in
each of the two classes. There are various ways in which these two numbers
may be used to determine which query is the best one to ask. For example, one
may try to maximize the expected gain. In the absence of any information, we
may assume that the expert is equally likely to give a positive or a negative
response. This implies that the expected number of inferences associated with
a query is given by the mean of the numbers of inferences in the two classes.
This means that the sum of the two numbers becomes the criterion: we choose
a query for which this sum is maximal over all remaining open queries.

In the application presented in the next section, another selection rule
was adopted, based on a ‘maximin’ criterion. The purpose is not so much to
maximize the direct gain as to minimize the possible cost of the ‘bad’ (in terms
of efficiency) response to the query. For each query, the number of inferences
for a positive response and that for a negative response are computed. First,
we only consider the minimum of these two numbers: query (A, q) is chosen
over query (B, p) if this minimum number for (A, q) is higher than that for
(B, p). Only when the minimum for the two queries is the same do we look
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at the other number and we choose the query for which this other number
is higher. For instance, suppose that query (A, q) yields 3 inferences in the
case of a positive response and 2 inferences for a negative, while for queries
(B, p) and (C, r) these numbers are 1 and 7, and 2 and 4, respectively. Then
query (A, q) is chosen over query (B, p) since 2 = min{3, 2} is greater than
1 = min{1, 7}, but query (C, r) is chosen over (A, q) since they have the same
minimum 2, but 4 = max{2, 4} is greater than 3 = max{3, 2}. In short, we
select a query with the best worse case and, from among these, one with the
best better case.

It is not always feasible to apply this selection process to all open queries.
If there are too many open queries, we just pick a pseudorandom sample
and choose the best query from this sample. We suspect that we do not lose
much this way, since the range of the numbers of inferences from one query
is rather restricted. Therefore, if there are many open queries, there will be
many that are “best” or approximately so and the important thing is to avoid
a particularly poor choice.

15.3 Kambouri’s Experiment

The QUERY routine was used to construct the knowledge spaces of five subjects:
four expert-teachers of high school mathematics, and the experimenter, Maria
Kambouri (whose name is abbreviated M.K. in the sequel). In this section
we describe the specific domain chosen to apply this routine, the subjects
employed for this task, the procedure used, and the results obtained from this
application of the routine. (For a more detailed presentation, see Kambouri,
1991, which is her Ph.D. dissertation).

15.3.1 Domain. The domain is within high school mathematics. The items
chosen are standard problems in arithmetic, algebra and geometry from the
9th, 10th and 11th grade curriculum of New York State high schools. Specif-
ically, the list of items was built around the Regents Competency Test in
Mathematics (RCT). Passing this examination is a minimum requirement for
graduation from New York State high schools. It is usually given at the end
of the 9th grade. Statistics from the New York City Board of Education show
that almost 70% of the students pass the test the first time around; those who
fail are allowed to retake it a few times (sometimes up to the 12th grade).

At the time of the study, the full test contained a total of sixty items
and was divided into two parts. The first one consisted of twenty completion
(open-ended) items, while the second was made of forty multiple choice items
for which the student had to select one answer from four alternatives. To pass,
students were required to provide correct solutions to at least 39 problems.
There was no time limit for this test. Most students returned their copy after
less than three hours. For the purpose of the study, only the first part of the
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test, containing the open-ended items, was of interest. The twenty open-ended
problems of the June 1987 Math RCT provided the core of the material on
which experts were to be questioned by the QUERY procedure. In order to span
a broad range of difficulty, this set of problems was extended to 50 by adding
10 simple problems of arithmetic and 20 more complex problems of first-year
algebra. The 30 additional items were reviewed by one of the experts, who
had extensive experience tutoring students for this type of material. A sample
of the 50 items is contained in the next subsection. The topics covered by the
final set of 50 problems included: addition, subtraction, multiplication and di-
vision of integers, decimals and ratios; percentage word problems; evaluating
expressions; operations with signed numbers; elementary geometry and sim-
ple graphs; radicals; absolute values; monomials; systems of linear equations;
operations with exponents and quadratic equations (by factorization).

15.3.2 Some sample items. Two examples among the ten easy items:

1. Add: 34 + 21 = ?

2. What is the product when 3 is multiplied by 5?

Three of the 20 open items from the June 1987 RCT:

3. Write the numeral for twelve thousand thirty seven.

4. In the triangle ABC, the measure of angle A is 30 degrees and the measure
of angle B is 50 degrees. What is the number of degrees in the measure of
angle C?

5. Add: 546 + 1,248 + 26 = ?

Three of the 20 more difficult items:

6. Write an equation of the line which passes through (1, 0); (3, 6).

7. Solve for x:
2x+ 1

5
+

3x− 7

2
= 7.

8. What is the product of 6x3 and 12x4?

15.3.3 The experts. Three highly qualified and experienced teachers and
one graduate student who had had extensive practice in tutoring mathemat-
ics were selected as experts. The teachers received payments at an hourly
rate. The experimenter was included as a fifth expert. All five experts were
accustomed to interacting with students in one-to-one settings. Moreover, each
expert had taught students coming from widely different populations, ranging
from gifted children to students with learning disabilities. At the time of this
study, the three teachers were working in the New York City school system.
A more detailed description of each of the five subjects follows. The initials of
all subjects but the experimenter have been changed to protect their identity.
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(A.A.) This subject had an M.Sc. in Biology and an M.A. in Education
(Teachers College), both from Columbia University. He had taught in a public
high school in Harlem for a total of 9 years: 2 in mathematics and the rest in
science. He had taught a remedial RCT class (students of grades 9-12) and
a Fundamental Mathematics class (9th grade), as a preparation for the June
1987 RCT exam. A.A. also taught summer schools and had been on the RCT
grading committee for the three summers preceding this study.

(B.B) This subject had a B.A. in Psychology and Education from Brook-
lyn College and an M.A. in Special Education for the emotionally handicapped
from Teachers College of Columbia University. She also held a Post-Graduate
Certificate on Education, Administration and Supervision. She had over ten
years of experience in teaching both mathematics and reading to students
with different kinds of learning problems including the learning disabled and
those with autistic tendencies. At the time of this study, she was also working
as a teacher-trainer in special education and a consultant (Staff Development)
for the N.Y.C. Board of Education. Her work involved tutoring students (up
to 18 years old) in mathematics. B.B. helped teachers set up diagnostic tests
and plan the curriculum at the beginning of the school year.

(C.C.) This expert held a Bachelor’s degree in Political Science (Russian)
from Barnard School at Columbia University and an M.A. in School Psychol-
ogy from N.Y.U. She had 15 years of experience tutoring students (mainly high
school) in mathematics: algebra, geometry, trigonometry, pre-calculus, as well
as other topics. In addition, C.C. had been a consultant in various pediatric
psychological centers, N.Y.C schools and maintained a private practice, work-
ing with learning disabled individuals of all ages on general organizational
skills and study techniques.

The other two subjects who served as experts, a graduate student and the
experimenter, originated from different educational systems. However, they
had studied (and had tutored) all the topics covered by the 50 items chosen
for this project.

(D.D.) This subject held a B.Sc. in Pure Mathematics from Odessa Uni-
versity (in the former USSR). At the time of the experiment, she was a student
in the master’s program at the Courant Institute of Mathematical Sciences,
New York University. D.D. has taught a class of 25 gifted children aged 13 to
15 for three years, in such topics as calculus, number theory and logic. She
also had experience tutoring high-school students who needed additional help
in their Geometry and Algebra classes.

(M.K.) The experimenter held a B.Sc. and a M.Sc. in Statistics from the
University of London. She had some experience in tutoring high school Math-
ematics and had been a teaching assistant for undergraduate and graduate
statistics and probability courses.
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15.3.4 Method. The experts were asked to respond to a series of questions
generated by a computerized version of the QUERY routine. The QUERY routine
was programmed in Pascal by Mathieu Koppen, who is one of the authors
of the source paper Kambouri et al. (1994). The user-interface was written
in C using the curses screen optimization library (Arnold, 1986) by another
author, Michael Villano.

Each step began with the presentation, on a computer screen, of a query of
the form [Q1]. The displayed question was accompanied by a request for the
expert’s response on the same screen. After the response had been entered at
the keyboard, the program computed the query for the next step. An example
of a typical screen is shown in Figure 15.3.

a. 318 b. 58.7× 0.97 = ?

×605

?

c. 1
2
× 5

6
= ? d. What is 30% of 34 ?

Suppose that a student under examination has just provided

a wrong response to problems a, b, c and d.

e. Gwendolyn is 3
4

as old as Rebecca

Rebecca is 2
3

as old as Edwin

Edwin is 20 years old.

How old is Gwendolyn?

Is it practically certain that this student will also fail

Problem e? Rating:

Figure 15.3. A typical screen for the QUERY routine.

The top part of the screen displays the problem or problems that a hypo-
thetical student has failed to solve (in this case, the four problems a to d).
Four problems can be displayed simultaneously in this section of the display.
If the number of these problems exceeds four3, the expert can toggle the dis-
play of the remaining items by pressing a key. In the middle of the screen, the

3 We shall see that no expert required more than 5 blocks to complete the task.
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text of the query regarding the antecedent items is displayed. This is followed
by the new problem (e). At the bottom of the screen, the remaining text of
the query appears, along with the prompt for the expert’s response, labeled
“Rating:”. The question for the expert in Figure 15.3 is whether the informa-
tion about failing the four items a to d is compelling the conclusion that the
student would also fail the new item e. Based on the expert’s answer, the rou-
tine computes the next query to ask and, after a short delay (typically on the
order of a few seconds), presents the expert with the next screen. Especially
after the third block, the delay between blocks was much longer due to the
large amount of computation necessary to prepare the open queries for the
next block.

Although the QUERY routine consists in asking the experts the queries of
the type [Q1], which involve a dichotomous (yes-no) decision, a rating scale
was used to ensure that the ‘yes’ responses to be used by the procedure cor-
responded to a practical certainty on the part of the experts. Therefore, an
unequally spaced 3-point scale was adopted with the numbers 1, 4 and 5. A
‘5’ represented a firm ‘yes’ answer to an instance of [Q1], a ‘4’ indicated less
certainty, and a ‘1’ represented a resounding ‘no.’ Only the ‘5’ response was
interpreted by the program as a ‘yes’ (positive) answer to a query of type
[Q1]. Both ‘4’ and ‘1’ were converted to a ‘no’ (negative). The points 2 and 3
were not accepted by the program as valid responses.

Prior to the start of the experiment, the experts were given the text of
the 50 items to review at home. Before they began the task, they received a
set of written instructions which included a short explanation of the purpose
of this experiment. Next, the list of the 50 items was displayed to acquaint
the experts with the appearance of the items on the screen. The procedure
was then explained and exemplified. A short, on-line training session followed,
consisting of 10 sample steps intended to familiarize the subjects with the task,
and in particular with the use of the 3 point scale. After each example, the
expert received feedback concerning the interpretation of the rating scale. This
introduction to the task lasted approximately thirty minutes. Before starting
the main phase of the experiment, the experts were given time to ask queries
about the procedure and discuss any difficulties they might have in answering
the queries with a rating.

The experts determined the number of steps for a given session. They were
advised to interrupt the experiment whenever they felt that their concentra-
tion was decreasing. At the beginning of the next session, the program would
return them to the same query from which they had exited. At any step, the
experts were given the option to go back one query and reconsider their re-
sponse. They also had the choice to skip a query that they found particularly
hard to answer. A skipped query could either come back at a later step, or be
eliminated by inference from some other query. Depending on the expert, the
task took from 11 to 22 hours (not including breaks).
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15.4 Results

15.4.1 Number of queries asked. Table 15.4 displays the number of que-
ries effectively asked by the procedure. The first two columns show the block
numbers and the theoretical maximum numbers of queries in each correspond-
ing block. This maximum number of queries would be asked if all the 250 sub-
sets are states. The remaining five columns contain, for each expert, the actual
number of queries they were asked. Compared to the theoretical maximum,
the reduction is spectacular.

Expert B.B. did not complete the procedure: as shown in Table 15.4, the
number of queries asked in the third block was still increasing (the other
experts’ results show a gradual decrease after the second block). Furthermore,
we observed that the fourth block of queries to be answered by expert B.B. was
even larger than the third. It was therefore decided to interrupt the routine
at that point. Of the remaining experts, one (D.D.) finished after 4 blocks,
and the other three (A.A., C.C. and M.K.) after 5 blocks.

Table 15.4. The second columns provides the maximum numbers of queries to
be asked in each of Blocks 1-5 through the QUERY procedure for 50 items. (These
maxima obtain when all the subsets are states. The five last columns contain the
actual numbers of queries asked the five experts for each of the five blocks. None of
the experts required more than five blocks to terminate the questioning. The symbol
‘-’ in a cell indicates that the procedure was interrupted (see the text above).

Block Maximum number Number of queries asked

number of queries A.A. B.B. C.C. D.D. M.K.

1
(

50
1

)
× 49 = 2,450 932 675 726 664 655

2
(

50
2

)
× 48 = 58,800 992 1,189 826 405 386

3
(

50
3

)
× 47 = 921,200 260 1,315 666 162 236

4
(

50
4

)
× 46 ≈ 107 24 - 165 19 38

5
(

50
5

)
× 45 ≈ 108 5 - 29 0 2

We noted in 15.2.7 that, at each intermediate step, the current family of
remaining states constitutes a space. The algorithm described in the previous
section can be adapted to construct such intermediate spaces. Conceptually,
this is achieved by replacing, at the chosen point, the real expert with a
fictitious one who only provides negative responses. That is, from this point
on we let the procedure run with automatic negative responses to all open
queries. This allows the construction of the knowledge spaces after each block
(including the one for the interrupted expert B.B. after Block 3, representing
the final data in her case).
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15.4.2 Number of states. Table 15.5 presents the gradual reduction of the
number of states in each block. At the outset, all 250 (≈ 1015) subsets of the
50 items set are considered as potential states. For experts A.A. and B.B. the
number of states after the first block was over 100,000. At the end, the number
of remaining states ranges from 881 to 3,093 (and 7,932 for the unfinished
space of B.B.). This amounts to less than one billionth of one percent of the
250 potential states considered initially. It is noteworthy that the reduction
after Block 3 is minimal for the four experts having completed the task.

Table 15.5. Number of knowledge states remaining at the end of each block. The
initial number is 250 for each expert. (As in Table 15.4, the symbol ‘-’ in a cell
indicate that the procedure was interrupted.)

Block Number of states per expert after each block

number A.A. B.B. C.C. D.D. M.K.

1 > 100,000 > 100,000 93,275 7,828 2,445

2 3,298 15,316 9,645 1,434 1,103

3 1,800 7,932 3,392 1,067 905

4 1,788 - 3,132 1,058 881

5 1,788 - 3,093 1,058 881

15.4.3 Comparisons of the data across experts. Despite a generally
good overall agreement between the experts, there are substantial discrep-
ancies concerning the details of their performances. In particular, we shall see
that the five final knowledge spaces differ markedly.

We first examine the correlation between the ratings. The queries asked
by the QUERY procedure depend on the responses previously given by the ex-
pert. In Block 1, however, the number of common queries asked for any two
experts was sufficient to provide reliable estimates of the correlation between
the ratings. For any two particular experts, such a correlation is computed
from a 3×3 contingency table containing the observed responses to the queries
that the experts had in common. The correlation was estimated, for each pair
of experts, using the polychoric coefficient (see Tallis, 1962; Drasgow, 1986).
This correlation coefficient is a measure of bivariate association which is ap-
propriate when ordinal scales are used for both variables. The values obtained
for this coefficient ranged between .53 and .63, which are disappointingly low
values hinting at a possible lack of reliability or validity of the experts.

These results only concerned the common queries that any two experts
were asked. Obviously, the same kind of correlation can also be computed on
the basis of the inferred responses, provided that we only consider the two
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categories ‘Yes-No’ used internally by the QUERY routine. In fact, the tetra-
choric coefficient was computed by Kambouri for all the responses—manifest
or inferred—to all 2, 450 = 50 · 49 theoretically possible queries in Block 1.
In this case, the data for each of the 10 pairs of experts form a 2× 2 contin-
gency table in which the total of all 4 entries is equal to 2,450. The entries
correspond to the 4 cases: both experts responded positively (YY); one expert
responded positively, and the other negatively (2 cases, YN and NY); both ex-
perts responded negatively (NN). As indicated in Table 15.6, the values of the
tetrachoric coefficient are then higher, revealing a better agreement between
the experts4. We note in passing that the number of NN pairs far exceeds the
number of YY pairs. A typical example is offered by the contingency matrix
of Experts A.A. and B.B. We find 523 YY pairs, 70 YN pairs, 364 NY pairs,
and 1,493 NN pairs. (There were thus 1,493 queries—out of 2,450—to which
both Experts A.A. and B.B. responded negatively.)

Table 15.6. Values of the tetrachoric coefficient between the experts’ ratings for
all the responses (manifest and inferred) from the full Block 1 data. Each correlation
is based on a 2× 2 table, with a total cell count of 2,450.

A B C D K

A - .62 .61 .67 .67

B - - .67 .74 .73

C - - - .72 .73

D - - - - .79

15.4.4 Descriptive analysis by item. Experienced teachers should be ex-
pected to be good judges of the relative difficulty of the items. The individual
knowledge spaces provide an implicit evaluation of item difficulty. Consider
some item q and the knowledge space of a particular expert. This item is
contained in a number of states. Suppose that the smallest of these states
contains k items. This means that at least k − 1 items must be mastered
before mastering q. The number k − 1 constitutes a reasonable index of the
difficulty of the item q, as reflected by the knowledge space of the expert. In
general, we shall call the height of an item q the number h(q) = k − 1, where
k is the number of items in a minimum state containing the item q. Thus,
a height of zero for an item means that there is a state containing just that
item.

4 We recall, however, that the tetrachoric coefficient is regarded to be a generous
index of correlation as compared, for example, to the phi-coefficient (cf. Ched-
zoy, 1983; Harris, 1983, in Volumes 6 and 9, respectively, of the Encyclopedia of
Statistical Sciences).
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Kambouri checked whether the experts generally agreed in their assess-
ment of the difficulty of the items, evaluated by their heights. The height
of each of the 50 items was obtained from the knowledge spaces of the five
experts. The correlation between these heights was then computed, for each
pair of experts. The results are contained in Table 15.7.

Table 15.7. Correlations (Pearson) between the heights of the 50 items computed
for each of the 5 experts.

A B C D K

A - .81 .79 .86 .81

B - - .80 .85 .87

C - - - .83 .77

D - - - - .86

The correlations between the indices of items in Table 15.7 are remarkably
high. It may then come as a surprise that a comparison between the knowledge
spaces exposes sharp disparities.

15.4.5 Comparison of the knowledge spaces. As indicated in Table 15.5,
the number of states differs substantially across the 5 constructed knowledge
spaces. In itself, however, this is not necessarily a sign of strong disagreement.
For instance, it might happen that all the states recognized by one expert are
also states in another expert’s space. Unfortunately, the picture is not that
simple.

The source paper contains the distribution of the size of the states in the
different knowledge spaces. For each space, the number of knowledge states
containing k items was computed, for k = 0, . . . , 50. Two exemplary his-
tograms of these distributions, concerning the two experts C.C. and A.A. are
displayed in Figure 15.4. Notice that the histogram of A.A. is bimodal. This
is the case for 4 of the 5 experts. No explanation was given for this fact which,
in any event, points to a noticeable difference between one expert and the
others.

The source paper also contains a comparison of the knowledge spaces of the
five experts based on a computation of a ‘discrepancy index’ computed from
the symmetric difference distance d(A,B) = |A4 B| between sets A and B
(cf. 1.6.12). Consider two arbitrary knowledge spaces K and K′. If these two
knowledge spaces resemble each other, then, for any knowledge state K in K,
there should be some state K ′ in K′ which is either identical to K or does
not differ much from it; that is, a state K ′ such that d(K,K ′) is small. This
suggests, for any state K in K, to compute for all states K ′ in K′, the distance
d(K,K ′), and then to take the minimum of all such distances. In set theory,
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Figure 15.4. Histograms of the relative frequencies of states containing a given
number of items, for the two experts C.C. and A.A.

the minimum distance between a set K and a family K is sometimes referred
to as the distance between K and K′ and is then denoted by d(K,K′) (thus
extending the notation d used for the distance between sets).

As an illustration, take the two knowledge spaces

K =
{
∅, {c}, {d}, {c, d}, {b, c, d}, {a, b, c, d}

}
,

K′ =
{
∅, {a}, {a, b}, {a, b, c}, {a, b, c, d}

}
.

(15.13)

on the same domain {a, b, c, d}. For the state {c} of K, we have

d({c},K′) = min
{
d({c},∅), d({c}, {a}), d({c}, {a, b}),

d({c}, {a, b, c}), d({c}, {a, b, c, d})
}

= min{1, 2, 3} = 1.

Performing this computation for all the states of K, we obtain a frequency
distribution of these minimum distances. (We have one such distance for each
state of K.) Thus, this frequency distribution concerns the number fK,K′(n)
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of states of K lying at a minimum distance n, with n = 0, 1, . . ., to any
state of K′. For two identical knowledge spaces, this frequency distribution is
concentrated at the point 0; that is,

fK,K(n) =

{
|K| if n = 0,

0 if n > 0.

In general, for a knowledge structure K on Q, the distance between any state
of K and a knowledge structure K′ on the same domain Q is at most one half
the number of items. So, fK,K′(n) is defined only for 0 ≤ n ≤ h(Q) = b|Q|/2c
(where brc is the largest integer smaller or equal to the number r). Two
examples of such frequency distributions are given in Figure 15.5 for the two
knowledge spaces of Equation (15.13). We see that three of the states of K lie
at a minimum distance of 1 to any state of K′, namely {d}, {c} and {d, c, b}.

3

2

1

0
0         1         2

3

2

1

0
0         1         2

(a) (b)

Figure 15.5. Two frequency distributions of the distances: (a) from K to K′; and
(b) from K′ to K; cf. Equation (15.13).

Note that the frequency distribution fK,K′ of the minimum distances from
K to K′ in Figure 15.5 (a) is distinct from the frequency distribution pictured
in Figure 15.5 (b), which is that of the minimum distances from states of K′

to states of K and is denoted by fK′,K.
Such frequency distributions were computed for all 20 pairs of spaces pro-

duced by the five subjects in the Kambouri (1991) study. For comparison
purposes, it is sensible to carry out a normalization, and to convert all the
frequencies into relative frequencies. In the case of fK,K′ this involves dividing
all the frequencies by the number of states of K. This type of distribution of
relative frequencies will be referred to as the discrepancy distribution from
the knowledge space K to the knowledge space K′.

A discrepancy index from K to K′ is obtained by computing the mean

di(K,K′) =
1

|K|

h(Q)∑
k=0

kfK,K′(k) (with h(Q) = b|Q|/2c) (15.14)

of the discrepancy distribution from K to K′, where Q is the common domain
of K and K′. The standard deviations of such discrepancy distributions are
also informative.
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Table 15.8. Means (and standard deviations) of the discrepancy distributions for
all pairs of knowledge spaces. The entry 4.3(1.6) in the second row of the first column
of the table refers to the mean (and the standard deviation) of the discrepancy
distribution from the space of expert B.B. to the space of expert A.A. The last
column contains the means and standard deviations of the discrepancy distributions
from the knowledge spaces of each expert to the ‘random’ knowledge space [K].

A B C D K [K]

A - 3.0(1.3) 4.8(2.0) 3.4(1.4) 4.3(1.6) 13.4(5.5)

B 4.3(1.6) - 4.6(1.4) 4.3(1.6) 4.3(1.6) 15.9(3.8)

C 4.1(1.8) 4.0(1.4) - 5.3(1.5) 5.6(1.7) 10.8(4.4)

D 3.2(1.3) 2.6(1.2) 4.7(1.6) - 4.0(1.7) 13.2(5.6)

K 3.5(1.5) 2.4(1.1) 4.7(1.8) 3.6(1.7) - 13.2(6.2)

The first five columns of Table 15.8 contain the computed means and
standard deviations (in parentheses) of all 20 discrepancy distributions5.

These are high numbers. As a baseline for evaluating these results, Kam-
bouri (1991) also computed the discrepancy distributions from the knowledge
space of each expert to a ‘random’ knowledge space, the construction of which
is explained below. It was sensible to take, for such comparison purposes, a
knowledge space with the same structure as that of one of the experts.
The knowledge space of M.K. was selected, but all 50 items were arbitrar-
ily relabeled. To minimize the risk of choosing some atypical relabeling, 100
permutations on the domain were randomly selected. The discrepancy dis-
tribution from the knowledge spaces of each of expert to each of these 100
random knowledge spaces was computed. Then, the average relative frequen-
cies were computed. In other words, a mixture of the resulting 100 discrepancy
distributions was formed. The numbers in the last column of Table 15.8 are
the means and the standard deviations of these mixture distributions. These
means are considerably higher that those appearing in the first five columns.
(Note that, since a knowledge structure contains at least the empty set and
the domain, the distance between any state of one knowledge space, to some
other knowledge space is at most 25, half the number of items.)

15.4.6 Discussion. On the basis of the data collected from the five experts,
it must be concluded that the QUERY routine has proved to be applicable in a
realistic setting. This was far from obvious a priori, in view of the enormous
number of queries that had to be responded to. However, a close examina-
tion of the data reveals mixed results. On the positive side, there is a good
agreement between experts concerning gross aspects of the results.

5 We recall that we have two discrepancy distributions for each (unordered) pair
of experts.
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In particular:

1. the sizes of knowledge spaces have the same order of magnitude: a few
thousand states—from around 900 to around 8,000—for the 50 items con-
sidered (see Table 15.5);

2. there is a good consistency across experts concerning the rating responses
given for the same queries asked by the routine (Table 15.6);

3. high correlations between experts are also obtained for the difficulty of
the items, as evaluated by their heights in the various spaces (Table 15.7).

Nevertheless, the discrepancy distributions reveal considerable differences
between the knowledge spaces constructed by the QUERY routine for the 5
experts. For example, we see from Table 15.8 that most of the means of the
discrepancy distributions exceed 4. (In other words, a state in one knowledge
space differs, on average, by at least 4 items from the closest state in some
other knowledge space.) This seems large considering that the domain has
only 50 items.

A sensible interpretation of these results is that there are considerable indi-
vidual differences between experts concerning either their personal knowledge
spaces or at least their ability to perform the task proposed to them by the
QUERY routine, or both of these factors. It must be realized that this task is
intellectually quite demanding. In the context of the QUERY routine, the notion
of ‘expertise’ has, in fact, two components. First, the expert has to be very
familiar with the domain and the chosen population of students, so as to be
(at least implicitly) aware of which knowledge states may appear in practice.
Second, the expert must also be able to transmit this knowledge structure
faithfully through his answers to the queries of the form [Q1]. Experts may
differ on either of these components.

Assuming that some carefully selected expert is subjected to the QUERY

routine, the questioning would not result in the correct knowledge space if
the responses to the questions asked by QUERY do not, for some reason or
other, faithfully stem from that expert’s awareness of the feasible states. For
example, it is conceivable that, when a query is perceived as too cognitively
demanding, a tired expert may resort to some kind of shortcut strategy. An
example given by Kambouri et al. (1994) involves the query displayed in
Figure 15.3. An expert confronted with that query must examine the items
a, b, c, d and e, and decide whether failing a to d would imply a failure on e.
Rather than relying on the exact content of each of a to d the expert could
just scan these items and arrive, somehow, at an estimate of some overall
“difficulty level” for the set of items failed. Similarly, instead of looking at the
precise content of the other item e, the expert might collapse the information
into some “difficulty level” and then respond on the basis of a comparison of
the two difficulty levels.

A variant of this strategy mentioned by Kambouri et al. (1994) may also
play a role in which an expert would simply rely on the number of items
failed. Referring again to the situation of Figure 15.3, an expert may be led to
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decide that a fifth item would also be failed, irrespective of its content. This
tendency may be reinforced by the fact that in the QUERY routine this question
is only asked when the expert has, before, given negative responses (directly
or through inferences) to all queries involving e with a strict subset of the
items a to d. So, the expert might read this query as a repetition, with an
implied request to “finally say yes.” (Notice, in this respect, that, with the one
exception, all experts finished within 5 blocks, so the situation in Figure 15.3
is about as bad as it gets.)

These examples illustrate how experts seemingly well informed about the
domain and the chosen population of students can nevertheless produce differ-
ent knowledge structures by giving invalid responses to some of the questions
posed by the QUERY routine. This phenomenon may explain some of the differ-
ences between experts that were observed in the experiment described in this
chapter. This raises the question whether, in further use of this routine, any-
thing can be done to reduce these effects. An answer to this question can go
into one of two directions: (i) try to detect and correct such invalid responses,
and (ii) try to avoid them as much as possible. Kambouri et al. (1994) discuss
both of these possibilities in detail. We only outline the main ideas here.

A practical way of detecting at least some invalid responses is to postpone
the implementation of the inferences associated with a response until either a
confirmation or a contradiction of that response arises from a new response.
Only the confirmed responses would be regarded as valid, and their inferences
implemented. Although this may not necessarily detect all invalid responses
(a confirmation of an erroneous response may still occur), it should certainly
decrease the frequency of those erroneous responses due to the unreliability
of the subject. As for avoiding invalid responses, we noticed earlier that the
questions asked were not all of equal difficulty. The questions from Block 1
are certainly easier to answer than those from Block 5, say. We may be able to
avoid some invalid responses by limiting the application of the QUERY routine
to Block 1. We would end up with a knowledge space that might be much
larger than the real one, but that could contain more valid states, possibly
most of the states of the target structure. This large knowledge structure
could then be reduced from student data, using a technique from Villano
(1991) based on the elimination of states occurring infrequently in practice.

The last part of this chapter is devoted to the work of Cosyn and Thiéry
(2000) who investigate some of these ideas, and show that they lead to a
feasible overall procedure.

15.4.7 Remark. As already mentioned in 3.2.3, the QUERY routine can be
used effectively with a different kind of data. We give more details on the
method here. Suppose that a preliminary knowledge space has been con-
structed on the basis of the responses of expert teachers limited to Block 1.
The resulting knowledge space, which is thus an ordinal space, may be ade-
quate enough to be used with students. Suppose also that a large number of
assessments has been performed, based on this ordinal space. In some applica-
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tions of learning space theory, such as the ALEKS system, a randomly selected
‘extra question’ p is asked in any assessment. This question is not part of the
assessment. However, it is instrumental in the computation of an index of its
validity. The related technique is used extensively in Chapter 17. These extra
questions can be used to estimate the conditional probabilities:

P(failing the extra question p failing all the items in a set A) > δ, (15.15)

where the numerical value of the parameter δ depends upon various factors,
such as the estimated probability of a careless error to the item p. Let us show
how such conditional probabilities can lead to a definition of the relation P,
thus replacing an expert’s judgement by assessment statistics.

We introduce a notation. We write

Rq =

{
1 if the response to question q is correct,

0 otherwise.

Using this notation, we can define

APq ⇐⇒ P (Rq = 0 ∀p ∈ A, Rp = 0) > δ (15.16)

where the r.h.s. of the equivalence is a more precise rewriting of Equa-
tion (15.15). Problem 10 asks the reader to examine the feasibility of the
construction of a space by this method6.

15.5 Cosyn and Thiéry’s Work

Cosyn and Thiéry began where Kambouri et al. (1994) left off. They developed
a procedure based on an improvement of QUERY mentioned in our discussion
of the Kambouri et al. (1994) paper in Subsection 15.4.6.

15.5.1 The PS-QUERY, or Pending-Status-QUERY routine. This
routine is a modification of QUERY in which a ‘pending status’ is conferred to
any response provided by the expert to a new query. The key mechanisms
involve two buffers and two tables in which such a response is temporarily
stored, together with the positive and negative inferences arising from that
response7. The buffers hold inferences immediately drawn from the combina-
tion of a new response with confirmed information, so that contradictions can
be spotted. The tables hold inferences which did not produce contradiction
but are still pending confirmation by a later response. We only give an outline
of the algorithm (for details, see Cosyn and Thiéry, 2000).

6 The knowledge spaces used in the ALEKS system are built by this method, which is
based on the combination of human expertise with assessment statistics, grounded
on Formula (15.16). We describe an application in Chapter 17.

7 The inferences have the same meaning as in Subsection 15.2.1 and Table 15.2.
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As before, we write Q for the domain and (A1, q1), . . . , (Ai, qi), . . . for
the sequence of tested queries. To manage the operations at step i, we rely on
several relations from 2Q \ {∅} to Q. The relations Ci−1 and C−i−1 store the
positive and negative inferences, respectively, that were confirmed in a sense
made clear below8. We denote by W T

i−1 and W−T
i−1 the two tables containing

the pending positive and negative inferences before the i-th query is asked.
These inferences are those from all the responses up to step i− 1 that did not
result in a contradiction but are still awaiting confirmation. Finally, we denote
by FB

i and F−Bi the buffers holding fresh positive and negative inferences,
respectively drawn from Ci−1 and C−i−1 and the expert’s response to query
(Ai, qi). (Note that FB

i contains the positive response to query (Ai, qi), if any,
and that F−Bi contains the negative response to (Ai, qi), if any.) Table 15.9
summarizes the terminology and notation.

Table 15.9. Summary of terms and notation for PS-QUERY

positive negative

Confirmed inferences (end of step i− 1) Ci−1 C−i−1

Tables of pending inferences (end of step i− 1) W T
i−1 W−T

i−1

i-th query (Ai, qi)

buffers of fresh inferences (step i) FBi F−Bi

At the beginning of step i, PS-QUERY collects the response to the query
(Ai, qi) and computes all the inferences (positive and negative) from Ci−1,
C−i−1 and the response. The routine places these inferences in the buffers FB

i

and F−Bi . These values are then compared with those in Ci−1, C−i−1, W T
i−1 and

W−T
i−1. A contradiction is detected by PS-QUERY in two cases: (i) when a fresh

positive inference, i.e., one stored in FB
i , is found to be already either in the

table W−T
i−1 of pending negative inferences or in the relation C−i−1; (ii) when a

fresh negative inference appearing in F−Bi is found to be either in the table
W T
i−1 of pending positive inferences or in Ci−1. If a contradiction of Type (i)

occurs, then all the pairs lying in FB
i ∩W−T

i−1 are withdrawn from W−T
i−1 in order

to yield W−T
i . (This means in particular that the last response is discarded.)

Similarly, if a contradiction of Type (ii) occurs, then all the pairs lying in
F−Bi ∩W T

i−1 are withdrawn from W T
i−1, which yields W T

i . In these two cases,

neither Ci−1 nor C−i−1 is modified to obtain Ci and C−i .
If no contradiction is detected, PS-QUERY looks for possible confirmations.

Each pair belonging to FB
i ∩W T

i−1 (and so being confirmed) is moved from

W T
i−1 to Ci−1. Thus Ci is initially set equal to Ci−1 ∪

(
FB
i ∩W T

i−1

)
and W T

i

to W T
i−1 \ FB

i . Similarly, each pair belonging to F−Bi ∩W−T
i−1 is moved from

8 The relations Ci−1 and C−i−1 are similar to the relations Pi−1 and P−i−1 for the
QUERY routine defined in Subsection 15.2.5. However, Ci−1 and C−i−1 record only
the confirmed inferences, while Pi−1 and P−i−1 record all the inferences.
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W−T
i−1 to C−i−1 to get an initial C−i . Then the procedure repeatedly computes

all inferences from Ci and C−i , adding them to the appropriate relation, until
the two relations are stabilized. In all cases, the new buffers FB

i+1 and F−Bi+1

are reset to the empty value before the next step i+ 1 begins.
Cosyn and Thiéry (2000) defines an exception to the above rules. A query

response which induces no new inference other than the response itself is
always immediately added to Ci or C−i (the two relations being then closed
for inferences).

15.5.2 Remark. As for QUERY, we may stop PS-QUERY at the completion of
any step i and build a knowledge space K(i). The reason is that Ci is an
entailment, from which a knowledge space K(i) can be derived. If the expert
were responding according to some latent entailment P corresponding to a
knowledge space K, then we would have Ci ⊆ P, and therefore K(i) ⊇ K.
(This reverse inclusion can be easily established; see also 8.6.2). Hence, we
would end up with too many states, but no state would be missing.

15.5.3 Simulation of PS-QUERY. In their paper, Cosyn and Thiéry com-
pare the performance of QUERY and PS-QUERY by computer simulations. The
target knowledge space, that is the one from which derives the latent entail-
ment of the virtual expert, has a domain of 50 items covering the arithmetic
curriculum from grade 4 to grade 8 (the actual knowledge space was con-
structed, using QUERY, by a real human expert). We denote by Kr this reference
structure, and by Kr,1 the superset of Kr obtained from the data of Block 1
of the real expert. Thus, Kr,1 is a quasi ordinal knowledge space (cf. Subsec-
tion 3.8.1), which we call the reference order. Note that Kr and Kr,1 contain
3,043 and 14,346 states, respectively. The simulated expert was assumed to
use Kr to provide the response to the questions asked by PS-QUERY.

Two kinds or error might occur in responding to the questions asked by
QUERY or PS-QUERY : (1) the false positive responses, consisting in responding
‘Yes’ when the correct response according to the reference structure is ‘No’;
(2) the misses, which are erroneous ‘No’ responses. In Cosyn and Thiéry’s
simulation, the probabilities of two kinds of errors were set equal to 0.05.

The first block of both QUERY and PS-QUERY was simulated for nineteen
fictitious experts. On the average, the number of queries required for termi-
nating the first block of PS-QUERY was roughly twice that needed for terminat-
ing the first block of QUERY: 1,480 against 662. These numbers are displayed
in the second column of Table 15.10, with the corresponding standard devi-
ations in parentheses. The third and fourth column of the table contain the
statistics for the discrepancy indices. The meaning of these statistics is as fol-
lows. Each of the nineteen simulations delivered a quasi ordinal space9 K

E,1
i

(1 ≤ i ≤ 19). Using Formula (15.14), the two discrepancy indices di(KE,1
i ,Kr)

and di(Kr,KE,1
i ) were computed for each of the nineteen cases, yielding thus

9 Because only Block 1 of the QUERY routine was simulated. The superscript 1 in
K

E,1
i refers to Block 1.
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two frequency distributions. The first number in each cell of Columns 3 and
4 refers to the mean of these two distributions. The standard deviations are
indicated in parentheses. The summary notation KE,1 used in the heading of
Table 15.10 refers to the variable ‘uncovered quasi ordinal space’, with values
K

E,1
1 , . . . ,KE,1

19 .

The critical column of the table is the third one. The number 1.51 in the
second row indicates that the states in Kr differ on the average by 1.51 items
from those contained in the quasi ordinal knowledge structures generated from
the first block of QUERY. By contrast, the number 0.16 in the last line shows
that, when the quasi ordinal spaces are generated by PS-QUERY, the states in
Kr only differ on the average by 0.16 from those of KE,1. In other words, Kr is
almost included in KE,1. Thus, in principle, almost all the states of the target
structure Kr can be recovered by suitably selecting from the states of KE,1.
How such a selection might proceed is discussed in the next section.

Table 15.10. The second column contains the means and standard deviations
(in parentheses) of the number of queries required to terminate the first block of
QUERY and PS-QUERY with the two error probabilities set equal to 0.05. The third and
fourth columns display the means and the standard deviations of the distribution
of the discrepancy indices. All the statistics are based on nineteen simulations.

No. of steps di(Kr,KE,1) di(KE,1,Kr)

QUERY 662 (39) 1.51 (0.65) 3.00 (1.21)

PS-QUERY 1,480 (65) 0.16 (0.11) 1.43 (0.17)

A more precise picture of the situation is provided by Figure 15.6 which is
adapted from Cosyn and Thiéry’s paper. This figure displays two histograms.
To the left of the zero point on the abscissa, we have the histogram of the
average discrepancy from Kr to the nineteen quasi ordinal spaces in KE,1. We
see from the graph that, on the average (computed over the 19 simulations),
of the 3,043 states of Kr about 2,600 are also in the expert’s space, and about
600 are at a distance of 1 to that space. These number are consistent with the
mean 0.16 in the last line of the third column of Table 15.10. To the right of
the zero point in the abscissa of Figure 15.6, we have a similar histogram for
the average discrepancy from the spaces in KE,1 to Kr.

In the next section, we examine how Cosyn and Thiéry go about refining
the ordinal knowledge space obtained from Block 1 of one expert so as to
obtain a knowledge structure closely approximating10 the target structure Kr.

10 In view of the false positive and misses responses to the queries, the probabilities
of which were set to 0.05 in both cases, there is no guarantee that the target
target structure Kr can be obtained exactly.



328 15 Building a Knowledge Space

4   3   2   1   0

1000

2000

3000

4000

5000

1   2   3   4   5   6   7

6000

Distance to the
Reference Structure

Distance from the
Reference Structure

Figure 15.6. Discrepancy distributions fKr,KE,1 (left) and fKE,1,Kr (right) obtained
from the nineteen simulations of PS-QUERY, with the two error probabilities set equal
to 0.05 (adapted from Cosyn and Thiéry, 2000). The means and standard deviations
of these two distributions are displayed in the last line of Table 15.10.

15.6 Refining a Knowledge Structure

Cosyn and Thiéry start from the assumption that, using PS-QUERY or some
other technique, a knowledge structure Ke,0 has been obtained (from a single
expert), that is a superset11 of the target structure Kr. They apply then a
procedure due to Villano (1991). The idea is to use Ke,0 for assessing stu-
dents in a large enough sample from the population, and to use their data to
prune Ke,0 by removing states with low probabilities of occurrence. Cosyn and
Thiéry simulation of this method show, surprisingly, that this can be achieved
with a number of assessed students considerably smaller than the number of
states in the structure to be pruned. (Plausible reasons for this fact are dis-
cussed later in this chapter.) The assessment procedure used is that described
in Chapter 13, with the multiplicative updating rule (cf. 13.4.4).

11 This would happen with an expert who would make no error in responding to
the questions asked by PS-QUERY, an unrealistic assumption. Cosyn and Thiéry
nevertheless make that assumption so as to clearly separate the investigation of
the refinement procedure from the analysis of PS-QUERY.
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The refinement is achieved in two steps. In the first step, a ‘smoothing
rule’ is applied which transforms some initial probability distribution12 on
the set of states into another one which takes into account the results of the
assessment of the students in the sample. In the second step, a ‘pruning rule’ is
used which removes all the states—except the empty states and the domain—
having a probability lower than some critical cut-off value. The probabilities
of the remaining states are then normalized so as to obtained a probability
distribution on the subset of remaining states. (Essentially, this amounts to
computing the probabilities of the remaining states conditional to the event
that one of them occurs.) The next two sections contain the details.

15.6.1 The Smoothing Rule. Suppose that a large number of students
s1, . . . , sh from a representative sample have been assessed by the procedure of
Chapter 13, and that the assessment has provided corresponding probability
distributions `1, . . . , `h on the collection of states. Each of these probability
distributions has most of its mass concentrated on one or a few states, and
summarizes the assessment for one student. These probability distributions
are used to transform an initial probability distribution ϕ0. For concreteness,
we may take ϕ0 to be the uniform distribution U on some initial knowledge
structure Ke,0. For example, if Ke,0 is the knowledge structure deduced from
the responses of an expert to the PS-QUERY procedure and containing n states,
then ϕ0(K) = 1

n for any K in Ke,0. We recall that Ke,0 is assumed to be a
superset of the target structure Kr.

Keeping track of all the probability distributions `j for j = 1, . . . , h is cum-
bersome if h is large. Accordingly, the effects of `1, . . . , `h on ϕ0 are computed
successively. Cosyn and Thiéry (2000) use the transformations:

ϕ0 = U, (15.17)

ϕj+1 =
jϕj + `j
j + 1

, for 1 ≤ j ≤ h− 1. (15.18)

Thus, each of the probability distributions ϕj+1 is a mixture of ϕj and `j
with coefficients j

j+1 and 1
j+1 , respectively. Note that for an initial knowledge

structure Ke,0 and any j = 1, . . . , h: if
∑
K∈Ke,1 ϕj(K) = 1, then

∑
K∈Ke,0

ϕj+1(K) =
j
∑
K∈Ke,1 ϕj(K) +

∑
K∈Ke,1 `j(K)

j + 1
= 1.

Presumably, if a sufficiently large number h of students are assessed, then ϕh+1

will differ from ϕ1 in that most states in Ke,0\Kr will have a lower probability
than most states in Kr. Thus, by removing all those states K of Ke,0 with
ϕh(K) smaller than some appropriately chosen threshold τ (excepting the
empty state and the domain), one can hope to uncover the structure Kr to a
satisfactory approximation.

12 This may be the uniform distribution on Kr.
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15.6.2 The Pruning Rule. The pruning rule

v : (K, ϕ, τ) 7→ vτ (K, ϕ)

acts on any triple formed by a knowledge structure K on some domain Q, a
probability distribution ϕ on K and a real number τ ∈ [0, 1]. It assigns to this
triple the subfamily of K defined by the equation

vτ (K, ϕ) = {K ∈ K ϕ(K) ≥ τ} ∪ {∅, Q}. (15.19)

Thus, vτ (K, ϕ) is a knowledge structure. A probability distribution ϕ′ on
vτ (K, ϕ) can be defined by the normalization

ϕ′(K) =
ϕ(K)∑

L∈vτ (K,ϕ) ϕ(L)
.

Note that the order in which the successive transformations of ϕj are car-
ried out is immaterial because the operator combining the successive distri-
butions `j—which is implicitly defined by Equation (15.18)—is commutative
(cf. Problem 11). The last student assessed thus has the same effect on build-
ing the resulting knowledge structure as the first one.

It remains to show that this scheme can work in practice. Again, Cosyn
and Thiéry answer this question by a computer simulation. In passing they
determine a suitable value for the threshold τ . Some of their analyses are
based on computing the quadratic discrepancy index between a structure K

and a structure K′, that is, the quadratic mean

di2(K,K′) =
√
di2(K,K′) + di2(K′,K′) (15.20)

between the two discrepancy indices for these structures.

15.7 Simulations of Various Refinements

Cosyn and Thiéry (2000) consider a knowledge structure Kr representing the
full set of knowledge states in some fictitious population of reference. They
suppose that an expert has been questioned by PS-QUERY, and that the first
block of responses provided a knowledge structure Ke,1 (which is thus quasi
ordinal). Specifically, they take Kr to be the reference knowledge structure
used in the simulation of PS-QUERY and described in Subsection 15.5.3, and
they suppose that Ke,1 = Kr,1. Thus, Kr and Ke,1 have 3, 043 and 14, 346
states, respectively.

Various samples of fictitious subjects were generated by random sampling
in the set of 3, 043 states of Kr. The probability distribution used for this
sampling was the uniform distribution ϕ1 = U on Kr. The sample sizes ranged
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from 1, 000 to 10, 000. Each of these fictitious subjects was tested by the
assessment procedure of Chapter 13, using the multiplicative rule (cf. 13.4.4).
It was assumed that these subjects were never able to guess the response of
an item that was not in their state. On the other hand, the careless errors
probability for any item q was assumed to be either 0 or 0.10. (In the notation
of 12.4.1, we thus have ηq = 0 and either βq = 0 or βq = 0.10.) For each of the
samples, the transformed distribution ϕh (where h is the size of the sample)
was computed by the Smoothing Rule defined by Equations (15.17)–(15.18).

15.7.1 The value of the threshold. The first task was to determine an ad-
equate value for the threshold τ of the Pruning Rule, according to which a
state K of Ke,1 is retained if and only if either ϕk(K) ≥ τ , or K is the
domain, or K is empty. Various values for the threshold τ were compared
using a sample of 1,000 fictitious subject. The knowledge structure gener-
ated by pruning Ke,1 with a threshold τ is thus Vτ (1, 001) = vτ (Ke,1, ϕ1,001).
The criterion used for the comparison was the quadratic discrepancy index
di2
(
Kr,Vτ (1, 001)

)
between Kr and Vτ (1, 001), that is, the quadratic mean

between the two discrepancy indices for these structures defined by Equa-
tion (15.20). This index was computed for τ varying over a wide range. It was
found that di2

(
Kr,Vτ (1, 001)

)
was very nearly minimum for τ = 1/|Ke,1|, the

value of the uniform distribution on Ke,1. This estimate of τ was adopted for
all further simulations reported in Cosyn and Thiéry (2000). Accordingly, we
drop the notation for the threshold and write V(h) = Vτ (h) in the sequel.

15.7.2 The number of subjects. The effect of the number of subjects as-
sessed on the accuracy of the recovery of the target structure was also inves-
tigated by simulation. The number h of subjects was varied from 0 to 10, 000,
for two careless error probabilities: β = 0 and β = 0.10. The two discrepancy
indices di

(
Kr,V(h)

)
and di

(
V(h),Kr

)
were computed in all cases and form

the basis of the evaluation.

15.7.3 Conclusions. The two discrepancy indices decrease as the number h
of subjects increase from h = 100 upward. With the careless error probability
β = 0, the discrepancy index di

(
Kr,V(h)

)
decreases from 0.62 initially, to

0.01 after about 3, 000 simulated subjects. With β = 0.10, as many as 8, 000
subjects are required for this index to reach the same value of 0.01.

The behavior of the other discrepancy index di(V(h),Kr) is different. Its
value decreases mostly for h between 0 and 1, 000 and appears to reach
an asymptote at about h = 1, 500. The asymptotic values of the index for
β = 0 and β = 0.10 are around 0.2 and 0.4, respectively. The results indicate
that, in both cases, most of the superfluous states were discarded at about
h = 1,000.

Overall, the refinement procedure studied by Cosyn and Thiéry (2000)
manage to recover 92% of the states of the target structure. The role of the
careless error rate is worth noticing. On the one hand, the asymptotic value
of di

(
V(h),Kr

)
increases with the error probability β. On the other hand,
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di2
(
Kr,V(h)

)
appears to tend to zero regardless of the error rate. It appears

thus that, while a large error rate of the subjects may produce a large refined
structure, most of the referent states will nevertheless be recovered if enough
subjects are tested.

15.8 Original Sources and Related Works

The bulk of this chapter comes from the three papers by Koppen (1993),
Kambouri et al. (1994) and Cosyn and Thiéry (2000). Concepts similar to
those used by Mathieu Koppen were developed by Cornelia Dowling in Müller
(1989) (see also Dowling, 1994). In another paper (Dowling, 1993a), she com-
bines these ideas into an algorithm that exploits the base to store a space
economically. In Heller (2004), the reader can find a formal approach in terms
of a generalization of closure spaces that brings much insight in the design of
querying algorithms of the type discussed here.

Problems

1. Certain queries need not be asked by the QUERY routine because the re-
sponses are known a priori. For instance, any positive response APq with
q ∈ A must be taken for granted. Why is that reducing the number of
possible queries by one-half? (Cf. the comments in 15.1.3(a).)

2. Prove using Equation (15.1) that if A ⊆ B ⊆ Q, q ∈ Q and APq, then
BPq (see Example 15.2.1(a)).

3. Show that the relation P defined by (15.1) restricted to pairs of items is
transitive.

In the four following problems, we ask the reader to provide a formal
justification for each of the four rules of inference contained in Table 15.2.

4. Prove [IR1].

5. Prove [IR2]

6. Prove [IR3].

7. Prove [IR4].

8. Is it true that any learning space on a domain containing exactly three
items is an ordinal space? Prove this fact or give a counterexample. In the
latter case, is the counterexample essentially unique? If so, what can you
say about the corresponding entailment?
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9. Let P be the unique entail relation corresponding to a knowledge space
(Q,K), and let A+, A− and P be defined as in Equations (15.11), (15.12)
and (15.5), respectively. Prove the following facts:
(i) A ⊆ A+;
(ii) A+ ∩A− = ∅;

(iii) A+ ∪A− = Q;
(iv) A− is a knowledge state in K;
(v) any knowledge state in K must be equal to some set A−.
(You may find Theorem 7.1.5 useful for answering the last two questions.)

10. Is the relation P defined by the equivalence (15.16) an entailment, that is,
does P necessarily satisfy Conditions (i) and (ii) of Theorem 7.1.3? How
critical are these condition for the construction of a space?

11. Show that the operator implicitly defined by Equation (15.18) and com-
bining any two distribution `j and `j+1 is commutative.
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Building a Learning space

An application of either QUERY or its extension PS-QUERY results in a knowl-
edge space, that is, a structure closed under union which is not necessarily a
learning space. In many practical situations, however, the essential properties
of learning spaces are regarded as crucial. In particular, the fringes enables
a compact, precise delineation of any knowledge state (cf. Theorems 4.1.7
and 2.2.4(iii)). This property plays a key role in providing a meaningful sum-
mary of an assessment. Moreover, in the guise of the outer fringe, it opens
the path to further learning. This raises the following problem: assuming that,
except for errors, the responses to the queries are dictated by a latent learning
space L, can a learning space approximating L be derived by the querying
method through some elaboration of QUERY? In this chapter, we outline two
quite different procedures to achieve this goal.

The first one is a modification of QUERY inspired by the fact, established
by Theorem 2.2.4, that a knowledge space (Q,K) is a learning space if and
only if it satisfies Axiom [MA] for an antimatroid:

[MA] If K is a nonempty subset of Q belonging to the family K, then there
is some q in K such that K \ {q} is a state of K.

This axiom suggests the following revision of QUERY. We start with a col-
lection of (potential) states which forms some initial learning space L0. For
example, L0 could be the power set of Q, or an ordinal space obtained from
implementing Block 1 of QUERY. (We know by Theorem 4.1.10 that ordinal
spaces are learning spaces.) We assume that the responses to the queries are
in principle based on a latent learning space L ⊆ L0. Whenever a positive
response to a query (A, q) is observed, we delete from the current learning
space, starting with L0, all the states contradicting this response only when
the resulting structure satisfies Axiom [MA]. A simple test to this effect will
be given in Theorem 16.1.6.

The defect of the above test is that it involves the whole collection of states
which can be unmanageably large. Hence, the test and the whole procedure
may not be applicable in many practical cases1.

1 The original QUERY procedure avoids this drawback by storing an entailment
rather than the whole collection of (potential) states.

J.-C. Falmagne, J.-P. Doignon, Learning Spaces, 
DOI 10.1007/978-3-642-01039-2_16, © Springer-Verlag Berlin Heidelberg 2011 
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Nevertheless, the idea is a sound one and it can be adapted: rather than
removing states from the learning space itself, we can operate in a similar
fashion on the base of the learning space or on the surmise function, both
of which are typically much smaller structures. The relevant result is Condi-
tion (iii) in Theorem 5.4.1, which is akin to Axiom [MA]. This condition is
recalled below in the form of an axiom for learning spaces.

[L3] For any clause C for an item {r} in a knowledge space K, the set
C \ {r} is a state of K.

Rephrasing a previous result in terms of [L3], we have then:

Theorem 5.4.1(iii). A knowledge space is a learning space if and
only if it satisfies Axiom [L3].

This observation leads to an algorithm managing the surmise function ap-
propriately. At the last stage of the algorithm, a learning space is constructed
as the collection spanned by the clauses in the final surmise function. We
describe this algorithm in Section 16.2.

The second procedure for building a learning space by the querying pro-
cedure, which is due to David Eppstein (see Eppstein, Falmagne, and Uzun,
2009; Eppstein, 2010), is quite different from the first one, which essentially
(if not literally) proceed by a gradual elimination of potential states. In a
first step, a knowledge space is built by a standard application of QUERY or
PS-QUERY. A learning space is then constructed by judiciously adding states
until wellgradedness is satisfied, while preserving ∪-closure. We sketch Epp-
stein method in Section 16.3.

16.1 Preparatory Concepts and an Example

Axiom [MA] suggests the concept of a ‘critical’ state, whose removal would
result in a violation of the axiom.This concept is defined below, together with
two related ones.

16.1.1 Definition. A nonempty state L in a knowledge structure K is hang-
ing if its inner fringe LI is empty2. The state L is almost hanging if it contains
more than one item, but its inner fringe consists of a single item. Denoting
the latter item by p, we then say that the state L \ {p} is critical in K for L.

So, an almost hanging state defines exactly one critical state. However, a
state may be critical for several almost hanging states.

16.1.2 Example. Consider the knowledge space with domain Q = {a, b, c, d}
and collection of states

L = {∅, {a}, {b}, {a, b}, {a, c}, {a, d}, {a, b, c}, {a, b, d}, {a, c, d}, Q}.
2 We recall that the inner fringe LI of a state L q in L such

that L \ {q} is a state; cf. Definition 4.1.6.
is the set of all items
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There are in L two almost hanging states, namely {a, c} and {a, d}, while
only {a} is critical. Moreover, there is no hanging state. Accordingly—see the
observation below—L is a learning space.

16.1.3 Lemma. In a learning space, any almost hanging state belongs to the
base of the space.

We leave the proof as Problem 2. Notice a simple rephrasing of the equivalence
(i) ⇔ (ii) in Theorem 2.2.4:

16.1.4 Observation. A finite knowledge space K is a learning space if and
only if it has no hanging state.

A query (A, q) with q ∈ A always produces a positive answer and does not
eliminate any state. We therefore assume q /∈ A for all queries (A, q) in this
chapter. To analyze the effect of a positive answer to a query, we need some
further notation.

16.1.5 Definition. Let (Q,K) be a knowledge space and let (A, q) be any
query with ∅ 6= A ⊂ Q and q ∈ Q \A. For any subfamily F of K, we define

DF(A, q) = {K ∈ F A ∩K = ∅ and q ∈ K}. (16.1)

Thus, DK(A, q) is the subfamily of all those states of K that would be re-
moved by a positive response APq to the query (A, q) in the framework of the
QUERY routine.

16.1.6 Theorem. For any knowledge space K and any query (A, q), the fam-
ily of sets K \DK(A, q) is a knowledge space. If K is a learning space, then
K\DK(A, q) is a learning space if and only if there is no almost hanging state
L in K such that A ∩ L = LI and q ∈ L.

The proof of this theorem given in 16.1.8 shows that the state L of the
theorem becomes hanging in the space K \ DK(A, q); notice that L \ LI is
critical for L in K and is removed from L, while L itself is not removed.

16.1.7 Example. We consider the learning space

L = {∅, {a}, {b}, {a, b}, {a, c}, {a, d}, {a, b, c}, {a, b, d}, {a, c, d}, Q},

from Example 16.1.2, and examine three possible queries.

If we observe a positive response to the query ({a}, b), only the state {b}
is to be removed; that is, DL({a}, b) = {{b}}. As {b} is not critical in L, its
removal does not create any hanging state, so L \DL({a}, b) = L \ {{b}} is a
learning space.

The positive response to the query ({c}, a), prompts the removal of four
states: DL({c}, a) = {{a}, {a, b}, {a, d}, {a, b, d}}. The remaining states form
a knowledge space which is not a learning space. Theorem 16.1.6 applies to
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the almost hanging state L = {a, c} (which becomes hanging in the new
structure).

Finally, if the query ({b}, a) results in a positive response, then the re-
maining states {∅, {b}, {a, b}, {a, b, c}, {a, b, d}, Q} form a learning space. No-
tice that the critical state {a} is removed from L, however the two states for
which it was critical, namely {a, c} and {a, d}, are removed at the same time.

16.1.8 .Proof of Theorem 16.1.6. To prove that K\DK(A, q) is a knowledge
space, notice first that neither ∅ not Q belongs to DK(A, q). Then, let E be
any subcollection of K \DK(A, q), and set L = ∪E. Then L ∈ K because K is
a space. Moreover, L /∈ DK(A, q). Indeed, if A ∩ L = ∅, then A ∩ E = ∅ for
all E in E, and as E /∈ DK(A, q), we must have q /∈ E. This in turn implies
q /∈ L, and so L ∈ K \DK(A, q).

Assume now that K is a learning space. If K \DK(A, q) is not a learning
space, then the latter structure does not satisfy Axiom [MA]. So, it contains
a hanging state L (Observation 16.1.4). As that state L was not hanging in
K, there is an item p in the inner fringe of L in K with L\{p} = K, a state in
K. The state K must have been deleted by the positive response to the query
(A, q); we have thus A ∩ K = ∅ and q ∈ K. Since L lies in K \ DK(A, q)
and contains q, we get L ∩ A 6= ∅. So, we have A ∩ L = {p}. Because p
was some item in LI, we derive LI = {p}. Thus L is almost hanging and
it satisfies moreover the other conditions in the statement. Conversely, it is
easily verified that if such a state L exists in K, then K \DK(A, q) does not
satisfy Axiom [MA] because L is hanging in it.

The key concept of Theorem 16.1.6 deserves a name.

16.1.9 Definition. Let (Q,L) be a learning space. A query (A, q) is hanging-
safe if there is no clause C for some item r such that A∩C = {r} and q ∈ C.
A query (A, q) is called operative (for L) if L \DL(A, q) ⊂ L.

Thus the collection L\DL(A, q) is a learning space if and only if the query
(A, q) is hanging-safe. The concepts of hanging-safety and operativeness are
independent: a query (A, q) can be hanging-safe without being operative, and
vice versa. A positive response to a hanging-safe, operative query (A, q) can
be implemented, leading to a reduction of the learning space.

Theorem 16.1.6 suggests the next algorithm, which is in the spirit of the
Näıve Algorithm 15.1.1.

16.1.10 Algorithm (A naive querying algorithm).

Step 1. Draw up the collection L of all the subsets of Q.

Step 2. Successively submit all the queries (A1, q1), . . . , (Ai, qi), . . . of the
form [Q1] (with qi /∈ Ai). Whenever AiPqi is observed, check whether
the current collection L contains an element L satisfying the condi-
tions of Theorem 16.1.6, that is:
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1. L is almost hanging in L;
2. A ∩ L = LI and q ∈ L;

if such an L exists, discard response AiPqi, otherwise replace the
current collection L with L \DL(Ai, qi).

The routine stops when all the queries have been considered. Because the
input to the routine is the power set of Q, this input L is a learning space.
The test made on each response AiPqi ensures that L will remain a learning
space throughout all of the algorithm execution.

16.1.11 Remark. This algorithm also works when, in Step 1, the collection
L is initialized to any learning space—for example, to an ordinal space with
domain Q. This is the case in Example 16.1.13 below.

Algorithm 16.1.10—which is rather trivial in that it does not use any of
the inference mechanisms discussed in 15.2.1—has two other serious defects.

16.1.12 Drawbacks of the naive algorithm. a) The routine does not nec-
essarily remove all the states that could be removed. Some query (Ai, qi) may
be discarded because there is a state K containing qi with K ∩ Ai = ∅ that
is critical for some almost hanging state L = K ∪ {p} with p ∈ A. How-
ever, it is possible that the almost hanging state L is later removed by some
query (Ai+k, qi+k), rendering state K not critical and so removable. Our next
example will provide a couple of such cases.

b) The second drawback is the same as that directed at the Näıve Algo-
rithm 15.1.1 by Comment 15.1.3 (a): keeping track of all the remaining subsets
of Q is infeasible for a large domain Q.

We deal with the first of these criticisms in our treatment of the simple
example below3. Rather than discarding the query (Ai, qi) of 16.1.12(a), we
assign a ‘pending status’ to such a query, and to any other of that kind. At
the end of the first querying round—we call it ‘the first stage’—, we start a
new round, the ‘second stage’, with all the queries in pending status. In the
case of our example, only one pass in the second stage suffices to build the
learning space. We will comment on this point after the example.

16.1.13 Example. The domain is the set Q = {a, b, c, d, e, f} and we sup-
pose that Block 1 of QUERY has uncovered the ordinal space L0 displayed in
Figure 16.1. The figure shows the Hasse diagram of the partial order defined
by the inclusion relation on the set L0 of states. The ordinal space L0 is
also specified by the Hasse diagram of the corresponding partial order on Q
displayed on the upper left of the figure (cf. Birkhoff’s Theorem 3.8.3). The
elimination of some of the states of L0 by the routine 16.1.10 is described by
Table 16.1, and Figures 16.1 and 16.2. Here, as in Chapter 15, the queries
(A, q) are gathered into blocks according to the size of the antecedent set A

3 The second drawback is dealt with in Section 16.2.
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with successively, with increasing value of the antecedent size. Table 16.1 is
in the style of Table 15.1, with the following differences. We suppose that
Block 2 consists in the positive responses to the four queries

({a, f}, b), ({a, e}, f), ({b, d}, c), and ({a, d}, e) (16.2)

and only those states affected by those responses are listed in the lines of the
table. These states are represented in the red ovals in Figure 16.1. There are
no other blocks, and the results of Block 1 are not recorded in the table.

Figure 16.2 is almost identical to Figure 16.1, the only difference being
that the ovals of some of the states have been shaded to indicate the two
stages of the elimination process. Our discussion of this case is based on both
Table 16.1 and Figure 16.2.

The response {a, f}Pb eliminates the four states {b}, {b, c}, {b, e} and
{b, c, e} (Theorem 16.1.6 applies here). These states are among the ones
marked by the red shading of their ellipses in Figure 16.2. The straightforward
elimination of these states is marked by the four ‘×’ symbols in the second
column of the table. The second response {a, e}Pf is more problematic, since
it would eliminate the states {c, f} and {b, c, f}. However, {b, c, f} is now—
because of the earlier removal of {b, c, e}—critical for {b, c, e, f} and so cannot
be removed without leaving {b, c, e, f} hanging, thus creating a violation of
Axiom [MA]. We can’t remove {c, f} either since it is critical for {b, c, f}. We
thus keep the two states {c, f} and {b, c, f}. (To be sure to maintain stability
under union when dealing with possible implementation of a positive response
to the query (A, q) on the current learning space L, we either remove from L

all the states in DL(A, q), or none of them.) We mark these two states by the
grey shaded ovals in Figure 16.2 and the two ‘×’ symbols in the third column
of the table.

These two states are tagged for a possible subsequent elimination (from
Figure 16.1, we see that if the state {b, c, e, f} were removed by a later re-
sponse, the elimination would indeed become possible). The next response
{b, d}Pc would eliminate the four states {c}, {a, c}, {c, f} and {a, c, f}. But
the removal of state {c, f} would render the state {b, c, f} hanging. Thus,
we assign a pending status to {b, d}Pc and write four ×’s in the appropriate
cells of the fourth column of Table 16.1. Finally, the last response {a, d}Pe
eliminates the state {b, c, e, f}. This terminates the first stage. We summarize
the results by marking, in the appropriate lines of column R/P, either × or
× respectively for the removed states and for the states pending elimination.

The second stage of the algorithm considers, successively, the two responses
currently in a pending status, namely {a, e}Pf and {b, d}Pc. The first response
now eliminates the two states {c, f} and {b, c, f} (this is made possible by
the earlier removal of state {b, c, e, f}). Then similarly the second response,
{b, d}Pc, eliminates the three states {c}, {a, c} and {a, c, f}. We indicate the
ultimate elimination of the overall five states by writing × in the cells of the

(cf. Example 15.1.2 and Subsection 15.2.8). As before, the blocks are dealt
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Hasse diagram
of the partial order

a b c

d e f

Q

{a,b,c,d,f}{a,b,c,d,e} {a,b,c,e,f}

{a,b,d,e} {a,b,c,e} {a,b,c,d} {a,b,c,f} {a,c,d,f} {b, c, e, f}

{a,b,c}{a,b,d} {a,c,d}{a,b,e} {a, c, f} {b, c, e} {b, c, f}

{a,b} {a, c}{a,d} {b, e} {b, c} {c, f}

{a}
{b}

{c}

∅

Figure 16.1. Inclusion graph of the ordinal space L0 on Q = {a, b, c, d, e, f}
hypothetically constructed by Block 1 of QUERY. The corresponding Hasse di-
agram is pictured on the upper left corner of the figure. The states relevant
to the elimination in Block 2, via the four positive responses to the queries
({a, f}, d), ({a, e}, f), ({b, d}, c), and ({a, d}, e) are inscribed in the red ovals.

last column. Note that the final learning space obtained is not ordinal since
neither {a, b, c} ∩ {a, c, d} nor {a, b, c, f} ∩ {a, c, d, f} are states.

Example 16.1.13 illustrates the importance of temporarily storing under a
pending status a positive response to a query that was initially not applicable.
It suggests a general algorithm in which pending queries are systematically
revisited until none of them is applicable—in other words, until the collection
of remaining states is stabilized. (In Example 16.1.13, only one pass in the
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Table 16.1. Elimination table: Block 2 of the routine
from Example 16.1.13 is applied to the ordinal space L0

that derives from the Hasse diagram on the right. Only four
responses are considered for that block, namely {a, f}Pb,
{a, e}Pf , {b, d}Pc, and {a, d}Pe. The symbols × and ×
mark a removal action due to the response heading the col-
umn. The removal is only potential in the case of the black
symbol ×. The column headed by R/P summarizes the re-
sults of the first stage of the algorithm, with × marking the
pending status of the response, and × the actual removal.
The R column contains the final elimination results.

a b c

d e f

First Pass Second Pass

{a, f}Pb {a, e}Pf {b, d}Pc {a, d}Pe R/P {a, e}Pf {b, d}Pc R

∅
. . . . . . . . . . . . . . . . . . . . . . . .

{b} × × ×
{c} × × × ×
{a, c} × × × ×
{b, c} × × ×
{b, e} × × ×
{c, f} × × × × ×
{a, c, f} × × × ×
{b, c, e} × × ×
{b, c, f} × × × ×
{b, c, e, f} × × ×

. . . . . . . . . . . . . . . . . . . . . . . .

Q

second stage sufficed.) Theorem 16.1.16 asserts that such an algorithm cannot
get jammed in an ‘untrue’ learning space—at least if the responses observed
truthfully reflect a latent learning space. In this case, the algorithm will always
output that learning space.

Note in passing that Theorem 16.1.16 asserts even more: if the responses
observed reflect a latent knowledge space K, then the algorithm outputs a
learning space which is minimal among the learning spaces that contain K.

To establish Theorem 16.1.16, we use a result from Edelman and Jamison
(1985) (see also Caspard and Monjardet, 2004) that we rephrase as Theo-
rem 16.1.15 below. The proof (which is the same as that of Edelman and
Jamison, 1985, but formulated here for union-closed structures) is based on
the following lemma.
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Q

{a,b,c,d,f}{a,b,c,d,e} {a,b,c,e,f}

{a,b,d,e} {a,b,c,e} {a,b,c,d} {a,b,c,f} {a,c,d,f} {b, c, e, f}

{a,b,c}{a,b,d} {a,c,d}{a,b,e} {a, c, f} {b, c, e} {b, c, f}

{a,b} {a, c}{a,d} {b, e} {b, c} {c, f}

{a}

{b}
{c}

∅

Figure 16.2. First stage of the algorithm eliminating some of the states of the
ordinal space L0 on Q = {a, b, c, d, e, f} hypothetically constructed by Block 1 of
the procedure. The responses {a, f}Pb and {a, d}Pe eliminate the five states {b},
{b, c}, {b, e}, {b, c, e} and {b, c, e, f} which are represented in the red shaded ovals.
The gray shadings of other ovals indicate the states that would be eliminated by
the answers {a, e}Pf and {a, e}Pc—these answers are set in pending status. See
Table 16.1 and the text for details.

16.1.14 Lemma. (i) For any state K in a finite knowledge space K, the
family K \ {K} is a knowledge space if and only if K is in the base of K.

(ii) For any state L in a learning space L, the family L \ {L} is a learning
space if and only if L is a state of the base of L which is not critical in L.
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Proof. (i) Let B be the base of K. If K \ {K} is a knowledge space, then K
cannot be a union of other states in K, and so K ∈ B. Conversely, if K ∈ B,
then the union of any subfamily of K\{K} belongs to K and cannot be equal
to K, so K \ {K} is union-closed.

(ii) If L \ {L} is a learning space, then by the first statement, L must be
in the base B of L. Moreover, L cannot be critical for any almost hanging
state M , since then M would be hanging in L \ {L}. Conversely, let L be a
state in B which is not critical for any state in L. Then L\{L} is union-closed
and does not contain any hanging state. So, L \ {L} is a learning space.

16.1.15 Theorem. Let J and L be two learning spaces on the same domain,
with B denoting the base of L. Suppose that J is covered by L (that is, J ⊂ L

and there exists no learning space M satisfying J ⊂M ⊂ L). Then L\J = {B}
for some B in B.

Proof. The hypotheses imply that there exists some state L in L \ J. As
L is the union of states from the base B of L, there must exist some state
B in B \ J (otherwise, J would not be union-closed). We may suppose that
B is maximal for inclusion in B \ J. We show that B is not critical in L.
Suppose, by contraposition, that B is critical for some almost hanging state
K in L. By Lemma 16.1.3 any almost hanging state in L necessarily belongs
to B. Hence, by the maximality of B in B \ J, we must have K ∈ J, with K
hanging in J, contradicting our hypothesis that J is a learning space. So, B
is not critical in L. By Theorem 16.1.14(ii), L \ {B} is a learning space with
J ⊆ L \ {B} ⊂ L. Our assumption that L covers J implies J = L \ {B}.

16.1.16 Theorem. Let K be a knowledge space and L be a learning space
on the same domain, with K ⊆ L. Suppose moreover that L is not minimal
among the learning spaces including K. Then there exists some query (A, q)
such that APq for the entailment relation P derived from K, and moreover
the collection M = L \DL(A, q) is a learning space satisfying K ⊆M ⊂ L.

Accordingly, if K is a learning space and the query responses are truthful with
respect to K, then the QUERY procedure will ultimately uncover K.
Proof. Let Q be the common domain of K and L. Our hypotheses imply
that there exists some learning space J such that K ⊆ J ⊂ L and J is covered
by L. By Theorem 16.1.15, L \ J = {B} for some state B in the base of L.
Since B /∈ J, the largest state M of J that is included in B is distinct from B.
(Notice that M may be empty.) Set A = Q \B and pick an item q in B \M .
Because A ∩ B = ∅ and q ∈ B, we must have B ∈ DL(A, q). In fact, we
have DL(A, q) = {B}. Indeed, any state J of L disjoint from A is included
in B; if J is not equal to B, then it belongs to J and is thus included in M .
Consequently, q /∈ J and thus J /∈ DL(A, q), so DL(A, q) = {B}. Hence, we
obtain

L \DL(A, q) = L \ {B} = J.

We may thus set M = J.
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16.2 Managing the Surmise Function

We now tackle the second drawback of the näıve algorithm mentioned in
16.1.12, which remains a weakness of our method for dealing with Exam-
ple 16.1.13 and also of the general approach suggested before Theorem 16.1.16.
Namely, we cannot realistically keep track of all the states of the learning space
under construction: even if the input to the algorithm is an ordinal space on
say 50 items, the number of states may be on the order of several millions.
In this section, we describe an algorithm that acts on the surmise function
rather than on the learning space itself.

We know from Definition 5.2.1 that any finite knowledge space (Q,K)
has a surmise function σ : Q → 22Q . For any item q in Q, σ(q) denotes the
collection of all the atoms at q, that is, the states in K that are minimal for
the property of containing q. The states in σ(q) are also called the clauses for
q in K. The space K is a learning space if and only Axiom [L3] is satisfied4:

[L3] For any clause C for an item {r} in a knowledge space K, the set
C \ {r} is a state of K.

This axiom is the cornerstone of the next algorithm because, by Theo-
rem 5.4.1, a knowledge space is a learning space if and only if it satisfies
Axiom [L3]. Moreover, an efficient test can be derived from [L3]. The general
idea of the algorithm is that, before implementing a positive response to a
query, the test is performed on the current surmise function to verify whether
removing the relevant states would result in a knowledge space that still sat-
isfies [L3], and so is a learning space. If the result of the test is positive, the
algorithm updates the surmise function by replacing suitable clauses by new
ones. When no more positive response can be implemented, the algorithm
outputs the learning space spanned by the final collection of clauses.

We now relate the two concepts of almost hanging state and clause. The
first assertion in the next theorem implies that, in a knowledge space, any
clause is either a one-element set, a hanging state or an almost hanging state.
We can then characterize learning spaces by stating that the clauses containing
more than one item are exactly the almost hanging states; cf. (ii)⇔ (iii) below.

16.2.1 Theorem. Let (Q,K) be a knowledge space with surmise function σ.
Then, for any state K in K, we have

K ∈ σ(p) =⇒ KI ⊆ {p}. (16.3)

If (Q,K) is finite, then the following three conditions are equivalent:

(i) for any state K in K, if K is in σ(p), then KI = {p};
(ii) for any state K in K and any item p in Q,

K ∈ σ(p) and |K| ≥ 2 ⇐⇒ K is almost hanging in K with KI = {p};
(iii) the space (Q,K) is a learning space.

4 Cf. the restatement of Theorem 5.4.3(iii) on page 336.
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The essence of Theorem 16.2.1 is that the base of a finite learning space
consists of all the one-element states and the almost hanging states.

Proof. Assume that K is in σ(p). If KI contained an item q distinct from p,
then K \ {q} would be a state such that p ∈ K \ {q} ⊂ K, contradicting the
minimality of the clause K.

(i)⇒(ii). The implication from left to right in the equivalence in (ii) follows
from (i) and the definition of an almost hanging state. Conversely, assume that
K is almost hanging with KI = {p}. Then by definition |K| ≥ 2. Suppose
that K is not in σ(p). Then, there would be a maximal state M such that
p ∈M ⊂ K. As |K\M | = {r} for some r 6= p would contradict our assumption
that KI = {p}, there are (at least) two items in K \M , say r and q. Some
clause C for r is included in K. This clause must contain q, otherwise we
would get M ⊂ M ∪ C ⊂ K contradicting the maximality of M . By (i), the
set C \{r} is a state. The union M ∪ (C \{r}) contains p and is another state
also contradicting the maximality of M . So K must be a clause for p.

(ii)⇒(iii). We derive from (ii) that for any clause C at p the set C \ {p}
is a state. Using the implication (iii) ⇒ (i) in Theorem 5.4.1, we derive that
the space (Q,K) is a learning space.

(iii)⇒(i). By the implication (i) ⇒ (iii) in Theorem 5.4.1, we have p ∈ KI

for any clause K for p. Condition (i) now follows from Equation (16.3).

The next result is a straightforward consequence of Theorems 16.1.6 and
16.2.1. It shows how we can verify on the surmise function of a learning space
whether the implementation of a positive response to a query yields a learning
space, in other words whether the query is hanging-safe.

16.2.2 Theorem. Let (Q,L) be any learning space, and let (A, q) be any
query. The query (A, q) is hanging-safe for L if and only if there is no clause
C for some item r such that A ∩ C = {r} and q ∈ C.

Proof. The statement is a reformulation of the second sentence in Theo-
rem 16.1.6, using Condition (ii) in Theorem 16.2.1.

16.2.3 Notation. When (Q,K) is a knowledge space with surmise function σ
and (A, q) is a query, we denote by σA,q the surmise function of the knowledge
space K \DK(A, q) (remember from Theorem 16.1.6 that K \DK(A, q) is a
knowledge space).

16.2.4 Example. We again use the learning space from Example 16.1.2:

L = {∅, {a}, {b}, {a, b}, {a, c}, {a, d}, {a, b, c}, {a, b, d}, {a, c, d}, Q}.

Its surmise function is:

σ(a) = {{a}}, σ(b) = {{b}},
σ(c) = {{a, c}}, σ(d) = {{a, d}}. (16.4)
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We examine the same three queries ({a}, b), ({c}, a), ({b}, a) as in Exam-
ple 16.1.7. If we observe a positive response to the query ({a}, b), a clause C
satisfying the condition of Theorem 16.2.2 would be a clause for a with b ∈ C.
As there is no such clause, ({a}, b) is hanging-safe and L\DL({a}, b) a learning
space. The response ({a}, b) is operative for L and its implementation removes
the single state {b}. Note that the query ({a}, b) is still hanging-safe for L\{b},
but no longer operative (for it). The surmise function of L \DL({a}, b) is

σ{a},b(a) = {{a}}, σ{a},b(b) = {{a, b}},
σ{a},b(c) = {{a, c}}, σ{a},b(d) = {{a, d}}. (16.5)

We see that the implementation of the query ({a}, b) resulted in the removal of
the unique clause {b} for b, which was replaced by the new clause {a, b} ⊃ {b}.
The state {a, b} was not removed, but had to be identified as the new clause
for b. We will comment on this replacement in Remarks 16.2.5.

If we observe a positive response to the query ({c}, a), we inspect the
clauses for c that contain a. There is only one such clause, namely {a, c}. By
Theorem 16.2.2, L \DL({c}, a) is not a learning space. The response ({c}, a)
is operative but not hanging-safe. In fact, we get

L \DL({c}, a) = {∅, {b}, {a, c}, {a, b, c}, {a, c, d}, Q}.

Finally, if we observe a positive response to the query ({b}, a), only the clause
{b} is to be inspected. The query ({b}, a) is hanging-safe. Its implementation
leads to the removal of the four states {a}, {a, c}, {a, d}, and {a, c, d}, yielding
the learning space

L \DL({b}, a) = {∅, {b}, {a, b}, {a, b, c}, {a, b, d}, Q},

with surmise function

σ{b},a(a) = {{a, b}}, σ{b},a(b) = {{b}},
σ{b},a(c) = {{a, b, c}}, σ{b},a(d) = {{a, b, d}}. (16.6)

16.2.5 Remarks. a) As this example shows, the implementation of a hanging-
safe query may result in the removal of clauses, which in some cases have to
be replaced by new clauses. We encountered two cases of such a replacement
in the example.

Implementing the query ({a}, b) on the learning space L of Example 16.2.4
removed the unique clause {b} of b. The replacement clause was {a, b}, which
can be seen as the union of the removed clause {b} with another, remaining
clause {a}.

The effect of the hanging-safe query ({b}, a) was similar, but more complex
in that its implementation resulted in the removal of the four states {a},
{a, c}, {a, d}, and {a, c, d}, three of which are clauses, namely {a, c}, {a, d}
and {a, d}. The replacement clauses are given in the last column of Table 16.2.
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Table 16.2. Clauses added or deleted when implementing the query ({b}, a) in
Remark 16.2.5 a).

Item clauses deleted clauses added

a {a} {a, b} = {a} ∪ {b}
c {a, c} {a, b, c} = {a, c} ∪ {b}
d {a, d} {a, b, d} = {a, d} ∪ {b}

We see that in all three cases, the replacement clause could be seen as
the union of the removed clause with some remaining clause. In this simple
example, finding the new clauses was easy and could be done by a cursory
inspection of the new learning space. Needless to say, a more systematic ap-
proach, a general algorithm, is required in realistic cases involving very large
structures with several hundred items. Actually, we plan a reverse course of
action, in that the new surmise function is computed first. It is repeatedly
updated by successive implementations of hanging-safe queries. At the end,
the new learning space produced by the observed queries is computed as the
span of all the final clauses. Nevertheless, this little example was useful in
suggesting how the new surmise function might be computed from a given
one modified by the implementation of a hanging-safe query5. The next ex-
ample is more complex and more revealing (Theorem 16.2.10 will state the
corresponding result).

b) Note that the clauses that were not removed by either ({a}, b) or ({b}, a)
remained clauses in L \ DL({a}, b) and L \ DL({b}, a) (respectively). This
observation can be generalized. For any learning space G and hanging-safe
query (A, q), any clause for some item r is a minimal state of G containing r.
If the clause C still belongs to L \DL(A, q), it will clearly be a minimal state
of L \DL(A, q) containing r. So, it will be a clause for r in L \DL(A, q). The
difficulty is the replacement of removed clauses, in particular because not all
such removed clauses have to be replaced (see Problem 3).

16.2.6 Example. Consider the learning space with surmise function

σ(a) = {{a, b, c, e}, {a, d, f}, {a, c, d}}, σ(d) = {{d}},
σ(b) = {{a, b, d, f}, {b, c, e}}, σ(e) = {{e}},
σ(c) = {{c, e}, {c, d}}, σ(f) = {{f}}.

σ(g) = {{c, e, g}, {d, e, g}, {a, d, f, g}}.
Thus, the domain of L is Q = {a, b, c, d, e, f, g} and its base is B = ∪r∈Qσ(r).
We can verify that none of the clauses is a clause for more than one item. By
Condition (ii) in Theorem 5.4.1, the above surmise function σ indeed defines
a learning space, which we denote by L.

5 Such a modification is not necessarily a reduction in size (cf. Example 16.1.7).
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Suppose that we observe the positive response {c, e}Pf . It is easily checked
that the query ({c, e}, f) is hanging-safe, and so L\DL({c, e}, f) is a learning
space. To build its surmise function, we first search for the clauses to be
removed from L. There are four such clauses, which form the family

DB({c, e}, f) = {{f}, {a, d, f}, {a, b, d, f}, {a, d, f, g}}

(in the notation of Definition 16.1.5). It turns out that each of these clauses
is the only one removed for a particular item. We have

Dσ(a)({c, e}, f) = {{a, d, f}}, Dσ(b)({c, e}, f) = {{a, b, d, f}},
Dσ(g)({c, e}, f) = {{a, d, f, g}}, Dσ(f)({c, e}, f) = {{f}}.

To find the replacement clauses and the surmise function of L \DL({c, e}, f),
it is impractical, as we argued earlier, to build the new learning space and
then to compute its surmise function. In the next subsection, we lay out
general principles for building the surmise function of the learning space
L \ DL({c, e}, f) directly from σ and the hanging-safe query ({c, e}, f). We
then go back to this example in 16.2.9 and apply these principles to the build-
ing of the new clauses.

16.2.7 Building the new clauses: general principles. We consider a
learning space (Q,L) and a hanging-safe query (A, q). Suppose that E is
a clause for an item r in L \DL(A, q) which was not a clause for r in L. We
want to characterize such clauses. As E is a state of L containing r, there is a
clause C for r in L with C ⊂ E. For the set E to be a clause in L \DL(A, q),
the clause C for r in L must have been removed by the query (A, q). Thus we
have A∩C = ∅ and q ∈ C (with possibly q = r). Accordingly, we have q ∈ E
and moreover, as E is not removed, there is some item p in A ∩ E. There is
some clause D for p in L with D ⊆ E. In fact, we must have A ∩ D = {p}.
Indeed, assume there were s in A ∩ D \ {p}. As D \ {p} is state in L, so is
C ∪ (D \ {p}). Then C ∪ (D \ {p}) is a state in L \DL(A, q) which contains
r, contradicting the minimality of E as a clause for r in L \DL(A, q). So, we
have A ∩ D = {p}. Again by the minimality of E, we conclude E = C ∪ D
with C and D clauses in L belonging to two specific families defined below.

16.2.8 Definition. Suppose that (L, Q) is a learning space with surmise func-
tion σ, and let (A, q) be a query which is hanging-safe for L. Two families of
clauses in L were met in the previous paragraph during the analysis of the
new clauses appearing in L\DL(A, q). The first one is the collection of clauses
for r removed by (A, q). We recall that it is defined by

Dσ(r)(A, q) = {C ∈ σ(r) A ∩ C = ∅, q ∈ C}. (16.7)

The second family of clauses will be denoted by

HA =
⋃
p∈A
{D ∈ σ(p) A ∩D = {p}} . (16.8)
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Our discussion in 16.2.7 indicates that any new clause E for r must be equal
to some union C ∪D, with C ∈ Dσ(r)(A, q) and D ∈ HA. Note, however, that
not all such unions are necessarily clauses in L \DL(A, q). Example 16.2.9, a
continuation of Example 16.2.6, examines several cases.

16.2.9 Example. We are dealing with the learning space (Q,L) whose sur-
mise function σ is defined by

σ(a) = {{a, b, c, e}, {a, d, f}, {a, c, d}}, σ(d) = {{d}},
σ(b) = {{a, b, d, f}, {b, c, e}}, σ(e) = {{e}},
σ(c) = {{c, e}, {c, d}}, σ(f) = {{f}}.

σ(g) = {{c, e, g}, {d, e, g}, {a, d, f, g}}.
Considering the (hanging-safe) query ({c, e}, f), we want to build the surmise
function of the new (learning) space L \DL({c, e}, f). From Example 16.2.6
we know that four clauses are to be removed, which are contained in the four
families

Dσ(a)({c, e}, f) = {{a, d, f}}, Dσ(b)({c, e}, f) = {{a, b, d, f}},
Dσ(g)({c, e}, f) = {{a, d, f, g}}, Dσ(f)({c, e}, f) = {{f}}. (16.9)

According to our discussion in 16.2.7, the new clauses to be added for the item
r are among the unions of a state in Dσ(r)({c, e}, f) with a state in H{c,e}.
Here we have

H{c,e} = ∪p∈{c,e}{D ∈ σ(p) {c, e} ∩D = {p}}
= {D ∈ σ(c) {c, e} ∩D = {c}} ∪ {D ∈ σ(e) {c, e} ∩D = {e}}
= {{c, d}} ∪ {{e}}
= {{c, d}, {e}}. (16.10)

To get the new clauses for item a, say, we first combine the states from the
family in (16.9) with the states in H{c,e} from (16.10). The resulting unions
are potential clauses for a. However, we must reject any such union that
either contains a clause for a in L that is maintained in L \Dσ(r)({c, e}, f),
or contains another union of the same type.

Table 16.3 gathers the relevant information for four items.

The following result generalizes this example. We recall that the collection
L\DL(A, q) resulting from the implementation of a positive response APq to
the learning space L is always a knowledge space (Theorem 16.1.6).

16.2.10 Theorem. Let (Q,L) be a learning space with surmise function σ.
Suppose that APq is a positive response to the query (A, q) (that is, A ⊂ Q and
q ∈ Q\A). For any item r in Q, the clauses for r in the space L\DL(A, q) are
the states which are minimal for the property of containing r in the collection(

σ(r) \Dσ(r)(A, q)
)
∪ {C ∪D C ∈ Dσ(r)(A, q) and D ∈ HA}. (16.11)
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Table 16.3. Potential new clauses resulting from the implementation of the
hanging-safe query ({c, e}, f), reasons for rejecting some of them, and the new sets
of clauses for the items (with the new clauses in red). The state given in the third
column is included in the potential new clause on the left, and is responsible for the
rejection.

Potential Included
Item

New Clauses Clause
Clauses in L \DL({c, e}, f)

{a, d, f} ∪ {c, d} {a, c, d}
a

{a, d, f} ∪ {e}
{{a, c, d}, {a, b, c, e}, {a, d, e, f}}

{a, b, d, f} ∪ {c, d}
b

{a, b, d, f} ∪ {e}
{{b, c, e}, {a, b, c, d, f}, {a, b, d, e, f}}

{f} ∪ {c, d}
f

{f} ∪ {e}
{{c, d, f}, {e, f}}

{a, d, g, f} ∪ {c, d}
g

{a, d, f, g} ∪ {e}} {d, e, g}
{{c, e, g}, {d, e, g}, {a, c, d, f, g}}

Proof. Any clause in σ(r)\Dσ(r)(A, q) is a state in L\DL(A, q) containing r.
The same holds for any C ∪D in the second collection in the union (16.11),
for C ∪D belongs to L and A ∩ (C ∪D) 6= ∅ (because A ∩D 6= ∅). On the
other hand, our discussion in 16.2.7 indicates that all the clauses for r must
belong to the collection (16.11). The conclusion follows (cf. Problem 4).

16.2.11 An algorithm for building a learning space. This algorithm is
an adaptation of QUERY. It starts with an initial learning space. In practice,
this initial learning space may be an ordinal space built by the first block of
QUERY. (By Theorem 4.1.10, any ordinal space is a learning space.)

The general idea is that whenever a positive response to a query (A, q)
is observed, the algorithm prunes the current learning space L only if the
resulting space is a learning space, that is (in view of Theorem 16.1.6), only
if (A, q) is hanging-safe in the sense of Definition 16.1.9. By Theorem 16.2.2,
this means that the query (A, q) passes the

HS-test: in the current learning space L, there is no clause C for any
item r in A such that A ∩ C = {r} and q ∈ C.

If the query (A, q) passes this test, the learning space L is replaced with the
learning space L\DL(A, q). However, a failure of the HS-test does not lead to
a final rejection of the query. Instead, (A, q) is temporarily put in a buffer, for
reconsideration at a later stage. Note that the HS-test only requires the veri-
fication of a property of the surmise function, so that there is no need to fully
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store any of the successive learning spaces evolving through the procedure.
Rather, the surmise function of L \DL(A, q) is built from the surmise func-
tion of the current learning space L and the response APq; Theorem 16.2.10
indicates how this can be done. As in the regular QUERY procedure, we want
to avoid asking queries whose responses could be derived from those of other
queries. So, we also store the entailment derived from all accepted positive
responses by making inferences such as those listed in Subsection 15.2.1 and
Table 15.2. Moreover, as in Koppen’s Algorithm (cf. Section 15.2), we also
compute negative responses and inferences. This is consistent with the hy-
pothesis that the responses to the queries are dictated by a latent learning
space, thus a knowledge space. In this conception, the positive responses to
queries that ultimately fail the HS-test are regarded as human or statistical
errors. By ‘ultimately’, we mean that the relevant queries have repeatedly
failed the test, and are discarded at the end of the procedure. (Clearly, this
conception makes sense only in cases in which the number of such ‘errors’ is
small relative to the total number positive responses to queries.) We now go
into more details.

The algorithm starts with an initialization step and then proceeds in two
main stages. As mentioned earlier, we take the ordinal space obtained from the
first block of the standard QUERY procedure as the initial learning space, which
is represented in the algorithm by its surmise function and its entailment.

The first main stage begins, during which the queries are collected or
inferred (see below), and then subjected to the HS-test. The algorithm en-
ters the second main stage when all the positive queries have been observed
or inferred. In the course of this stage, the algorithm also draws inferences
from the responses to the queries, that is, it relies on the relations Pyes and
Pno of Section 15.2. The management of the inferences is modified, however.
Applying the rules from Section 15.2 produces both positive and negative in-
ferences, that is, pairs which could be added to Pyes and Pno, respectively. In
our case, all the negative inferences are accepted, but a positive inference is
accepted only if it passes the HS-test. When a new positive response APq is
collected or inferred, the algorithm checks whether (A, q) passes the HS-test

on the current learning space L. If it does, the algorithm implements (A, q)
on L, which produces the next learning space L \DL(A, q). If (A, q) fails the
HS-test, then (A, q) is added to the pending table. The first stage terminates
when all the queries with positive responses have been either implemented
or stored in the pending table. Note that, at that time, as illustrated by our
Example 16.1.13, some of the queries in the pending table may have become
hanging-safe. Indeed, the almost hanging states for which they were critical
may have been removed by later queries. Taking care of those queries is the
function of the second stage.

In the second stage, the queries in the pending table are successively tested
until none of them passes the HS-test or the table is empty.

To achieve the operations of the first and second stages, the algorithm
relies on two buffers:
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initializations

collect response
to new query (A,q)

add (A, q) to Pno

and draw inferences

does (A, q) pass
the HS-test ?

add (A, q) to
pending table

update the
surmise function

add (A, q) to Pyes

and draw inferences

are all queries asked
or inferred?

SECOND

STAGE

Yes

No

Yes

No
Yes

No

Figure 16.3. Overall design of the initializations
and first stage in Algorithm 16.2.11.

• the Pending-Table where the queries having failed the HS-test are col-
lected awaiting for further use;
• the R-Store in which the queries stored in the Pending-Table are copied

at the beginning, and possibly during other passes of the second stage.

The algorithm is sketched in Figures 16.3 and 16.4. Its basic step are as
follows.

1. Initializations: the algorithm computes the surmise function and the en-
tailment of a starting learning space (typically, an ordinal space generated
by the first block of QUERY).

2. In the first stage (Figure 16.3), the algorithm collects responses to queries
and computes the related inferences. The principle is that the negative
responses and inferences are always accepted, while the positive responses
and inferences must past the HS-test before being accepted. A rejected
positive response or inference is added to the Pending-Table. Notice that
the description of the algorithm does not spell out all details covered by
the instruction “draw inferences.” These are covered in Section 15.2.

3. The second stage begins by checking whether the Pending-Table is
empty. If so, the algorithm outputs the current surmise function which is
the final one. The corresponding base spans the final learning space. Oth-
erwise, all the pairs from the Pending-Table are moved to the R-store.
Then, those pairs are examined one by one and subjected to the HS-test

to check whether they are implementable. If yes, a new learning space
is computed and the pair deleted; if not, the pair is moved into the
Pending-Table (thus it becomes available for the next pass). Of course,
inferences can also be computed along the second stage; we do not mention
this in Figure 16.4.
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FIRST

STAGE
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Figure 16.4. Overall design of the second stage of Algorithm 16.2.11.

16.2.12 Comments on Algorithm. a) Notice that in the first stage, we
augment the pending table with positive responses and inferences that can-
not be implemented; however, we make no use of the information in the table.
Another version of the algorithm could specify that whenever the surmise func-
tion is modified in Stage 1, the Pending-Table is searched for queries whose
status are now changed to implementable. (As we saw in Example 16.1.13, a
positive response which failed the HS-test at some point may later pass that
test because some critical state has been removed.)
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b) Other features of QUERY could be taken into account here, as for instance
the block structure or the subtable (cf. Section 15.2.8).

c) It is also clear that PS-QUERY rather than the straightforward QUERY could
be taken as the basic routine. An actual implementation could integrate such
features in the routine.

16.3 Engineering a Learning Space

David Eppstein proposes a very different solution to the problem of construct-
ing a learning space through an elaboration of QUERY (Eppstein et al., 2009;
Eppstein, 2010). He starts with a knowledge space K constructed by QUERY in
the usual way, and then asks two questions:

1. How can we test whether the knowledge space K is well-graded?
2. If it is not, how can we in some optimal sense add states to K in order

to achieve wellgradedness? (This is what is meant by ‘engineering’ in the
title of this section.)

The first question has been considered earlier in this book (see Section 4.5),
but Eppstein has obtained new results concerning in particular the complexity
of the algorithm. The second question is new and originated with the two
papers cited above. We only give a summary of this work here, without proofs.

Eppstein assumes a standard random-access-machine6 model of computa-
tion performing the simple steps in constant time. The input to the algorithms
is a family of sets B, with each element of the sets in B taking a constant
amount of computer storage. Typically, the family B is the purported base
of a knowledge space or a learning space. As usual, the O-notation is used
to represent the time bound for the algorithms. The results are expressed in
terms of the following parameters.

16.3.1 Definition. We denote by

b the number of sets in B,
a the size of the largest set in B,
c the sum of cardinalities of the sets in B.

Clearly, we have a ≤ c ≤ ba.

If B is the base of a knowledge space (Q,K) with surmise function σ,
we have b = | ∪q∈Q σ(q)|. Moreover, K is a learning space if and only if
b =

∑
q∈Q |σ(q)| (cf. Theorem 5.4.1).

6 Random access enables the retrieval of stored data items directly, rather that
sequentially, as in sequential access machines (cf. for example Shmoys and Tardos,
1995; Aho, Hoperoft, and Ullman, 1974).
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16.3.2 Theorem. The following two facts regarding a family B can be de-
termined in time O(bc).

(i) B is the base of a given ∪-closed family F.
(ii) B is the base of a learning space.

Next, Eppstein considers the situation in which a family B is not the base
of a well-graded family. He asks: how can we, by the addition of some suitable
states, extend B so as to produce a well-graded family that is as close as
possible, in some sense, to the span of B? The next definition introduces the
relevant concept.

16.3.3 Definition. Suppose that F is a family of sets that is not well-graded.
A minimal well-graded extension of F is a well-graded ∪-closed set family H

such that:

(i) F ⊂ H;
(ii) there is no ∪-closed, well-graded family H′ satisfying F ⊂ H′ ⊂ H.

16.3.4 Theorem. Any family of sets F has a minimal well-graded extension
which can be found in time O(bca+ b3c).

16.3.5 Remark. This result can of course be applied in a situation where
F = B is the base of a ∪-closed family. Eppstein points out that, in such a
case, the completion algorithm used in the proof does not ensure that every
set in the original base B is also a set in the new base, which may be regarded
as a flaw. From our standpoint, however, this is not a defect. We would use
the completion algorithm in situations in which a knowledge space K with
base B has been constructed by the QUERY routine. What is important is that
all the states of K are also states of the well-graded space constructed by the
algorithm, which they are by definition of a well-graded extension.

In any event, the question leads Eppstein to ask: for a base B of a ∪-closed
family, can we find a minimal well-graded extension F of B such that any set
in B belongs to the base of F? This problem is intractable.

16.3.6 Theorem. Given a base B of a ∪-closed family, it is NP-complete to
determine whether there exists a minimal well-graded extension F of B such
that B is a subset of the base of F.

16.4 Original Sources and Related Works

The results of Section 16.3 are due to David Eppstein and taken from his
recently published joint article with Jean-Claude Falmagne and Hasan Uzun
(Eppstein et al., 2009).

The results and algorithms described in the rest of this chapter are new.
We thank Jeff Matayoshi, Fangyun Yang, and especially Eric Cosyn for some
useful discussions on these matters.
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Problems

1. In an ordinal space on a set of n items, what is the number of hanging
states? of almost hanging states?

2. Prove Lemma 16.1.3. Does the statement of the theorem still holds for
knowledge spaces? For discriminative knowledge spaces? If it does not,
provide a counterexample.

3. Construct an example of a learning space L with surmise function σ, and a
query (A, q) which is hanging-safe for L and also satisfying the following
condition: implementing (A, q) results in the removal of a clause C for
item p, and σ(A, q)(p) = σ(p) \ {C} (thus no ‘new’ clause is added).

4. Complete our proof of Theorem 16.2.10, making the arguments more ex-
plicit.

5. For the learning space of Example 16.2.6 (continued in 16.2.9), with do-
main Q = {a, b, c, d, e, f, g} and surmise function

σ(a) = {{a, b, c, e}, {a, d, f}, {a, c, d}}, σ(d) = {{d}},
σ(b) = {{a, b, d, f}, {b, c, e}}, σ(e) = {{e}},
σ(c) = {{c, e}, {c, d}}, σ(f) = {{f}}.

σ(g) = {{c, e, g}, {d, e, g}, {a, d, f, g}}.
verify that the query ({a, b}, g) is hanging-safe and, if so, build the surmise
function of the learning space L \DL({a, b}, g).

6. Write (L, Q) and B for a learning space and its base. If L = 2Q, we have
|B| = |Q|. Is there an example in which |B| = |Q| = |L|?

7. For a latent learning space which is a chain, describe the queries that will
generate a positive responses.

8. Some infinite ∪-closed families have a base, and also satisfy Axioms [MA]
and [L3]. Is Theorem 16.2.10 still true for such families?

9. Modify Example 16.2.9 so that the query ({c, e}, f) is still hanging-safe
but produces a case in which all the potential new clauses are rejected
because they fail the minimality condition.





17

Analyzing the Validity of an Assessment

The theory described in this monograph has led to a number of applica-
tions, the most prominent ones being the ALEKS and the RATH educational
softwares1,2. The focus of this chapter is on the ALEKS system. A large scale
statistical analysis of the validity of its assessments was recently reported by
Cosyn et al. (2010). We summarize these results which we regard as exem-
plary by the depth and details of the analysis. Using the term ‘validity’ in this
context deserves a discussion.

17.1 The Concept of Validity for an Assessment

In formal logic, ‘validity’ refers, approximately, to the correctness of formulas
or derivations (see, for example, Suppes, 1957). Its meaning in psychomet-
rics, the theoretical basis of standardized testing, is quite different. In fact,
‘validity’ has several related meanings in this field. We review them briefly in
our next subsection in order to clarify, from that standpoint, the similarities
and differences between the psychometric and learning spaces methodologies.

17.1.1 On the validity and reliability of psychometric tests. The aim
of a psychometric test is to provide a numerical score3 indicative of the compe-
tence of a student in a scholarly subject. Generally speaking, a psychometric
test is regarded as valid if its result correlates well with a relevant criterion.
For example, a standardized test of quantitative abilities, taken before the
beginning of a college education, would be regarded as valid if the correla-
tion between the results of the test and the grades obtained in a mathematics
course taken during the first semester is sufficiently high. This particular con-
cept of validity is paramount for psychometricians in view of the methods
used for the construction of such tests, which are based on a criterion of ho-
mogeneity of the items: an item whose response is poorly correlated with the
overall result of the test may be rejected. The rationale behind such a proce-
dure is that the test is regarded as a measurement instrument. The items are
assumed to vary along a continuum of competence. Items which cannot be

1 For the RATH system, see Hockemeyer (1997). Other relevant references and sys-
tems were mentioned on page 11.

2 Some other applications are in chemical education, for example (see Arasasingham
et al., 2004, 2005; Taagepera et al., 1997; Taagepera and Noori, 2000; Taagepera
et al., 2002, 2008).

3 Or, in some cases, a numerical vector with a small number of dimension.
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placed somewhere in that continuum are eliminated, even though they may
be an integral part of the relevant scholarly curriculum4.

As a consequence, a psychometric test is not automatically endowed with
either ‘face validity’ or ‘content validity.’ These two related, but somewhat dif-
ferent concepts attempt to capture the connection between the test score and
what the test is supposed to measure. For an introduction to these psychome-
tric concepts, see for example Anastasi and Urbina (1997). In this monograph,
which is a classic in this field, the authors explain ‘content validity’ as a con-
cept involving

“the systematic examination of the test content to determine whether
it covers a representative sample of the behaviour domain to be mea-
sured” (Anastasi and Urbina, 1997, p. 114).

‘Face validity’ has a similar meaning, but is less methodical and relies essen-
tially on the intuition of the experts concerning the relationship between the
items of the tests and the variable intended to be measured by it.

The concept of ‘reliability’ is distinct from that of validity and applies to
the replicability of the test results. The Oxford English Dictionary defines
reliability as “The extent to which a measurement made repeatedly in the
same circumstances will yield concordant results.”5 In psychometrics, a test is
regarded as reliable if the correlation between two different but similar versions
of the same test is sufficiently high. In our terminology, ‘similar versions’ would
mean that the two versions of the test contain different instances of the same
items. It is clear that, while a psychometric test can be reliable without being
valid, the reverse implication does not hold. (An extended technical discussion
of the concept of ‘reliability’ can be found, for example, in Crocker and Algina,
1986, Chapters 6-9.)

17.1.2 The validity/reliabity of an assessment in a learning space.
In principle, the situation is quite different in the case of the learning space
because the collection of all the items potentially used in an assessment is,
by design, a fully comprehensive coverage of a particular curriculum. To wit,
the items in the learning space are stock features of standard textbooks on
the subject, and no important concepts are missing. Asserting then that such
an assessment, if it is reliable, is also automatically endowed with a corre-
sponding amount of validity is plausible. In other words, assuming that the
database of problem types is a faithful representation of the curriculum, the
measurement of reliability is confounded with that of validity. This remains
arguably true even in the case of a placement test manufactured by selecting
a subset of the full set of items6, at least if the selected items are chosen to
be a representative sample of the curriculum.

4 In other words, the test data must fit a particular unidimensional statistical
model. Items contributing to a poor fit of the model are dropped from the test.

5 O.E.D. 2000 Edition.
6 This subset of items defines thus a projection in the sense of Definition 2.4.2.
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Cosyn et al. (2010) use the following method to evaluate the reliabili-
ty/validity of the results of an assessment performed in the framework of a
learning space. At some point in each assessment, an extra problem7 p is
randomly selected in a uniform distribution on the set of all problems. Then,
an instance of p, also randomly selected, is given to the student, whose re-
sponse is not taken into account in assessing the student’s state. At the end of
the assessment, the algorithm chooses one knowledge state, among all those
in the learning space, representing the student’s competence in the schol-
arly field. A prediction can thus be made regarding the student’s response to
the extra problem p: if the selected state contains p, then the the student
response should be correct8; otherwise, the student’s response should be in-
correct. Cosyn et al. (2010) investigate the accuracy of such a prediction on
a very large set of assessment data. The authors also examine the evolution
of the accuracy of this prediction in the course of the assessment. Note that
the authors assume that the probability of a correct response to p does not
vary in the course of the assessment. This assumption seems reasonable since
no learning is taking place at that time.

In the rest of this chapter, we summarize the results of Cosyn and his
collaborators, which are based on the specific learning space built for ele-
mentary algebra9 and on the assessment algorithm used at that time by the
ALEKS system.

17.2 The ALEKS Assessment Algorithm

The assessment algorithm in the ALEKS system is a stochastic assessment pro-
cedure in the sense of Definition 13.3.4, which uses the parametrized mul-
tiplicative updating rule and the half-split questioning rule (cf. Definitions
13.4.4 and 13.4.7, respectively). We recall its main features, referring the
reader to Chapter 13 for a detailed exposition. Each trial of the assessment
consists in a triple (rn, qn, Ln) where n is the trial number, rn is the response
given (coded as 0 or 1 for incorrect or correct), qn stands for the item asked,
and Ln is the likelihood function —or probability distribution—on the set K

of all the knowledge states on trial n.
Writing as usual Kq for the subcollection of K containing all the states

containing item q,

Ln(Kq) =
∑
K∈Kq

Ln(K)

7 This is the terminology used by Cosyn et al. (2010) and we use it in the sequel.
Thus, problem and item are synonyms in this chapter.

8 Or should be corrected with probability (1 − βp), where βp denotes the careless
error probability to problem p (cf. Subsection 17.4.4).

9 In the U.S., this particular mathematics curriculum is often called ‘Beginning
Algebra’ or ‘Algebra 1.’
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is the likelihood, when sampling a state from K on trial n, that such a state
contains item q. If there are no careless errors10, Ln(Kq) can be regarded as
the probability of a correct response to item q on trial n from the standpoint
of the assessment algorithm.

The likelihood of a state increases or decreases on every trial depending on
the event on that trial. If the response of the student to item q is correct, the
probability of all the states containing q is increased and the probability of all
the states not containing q is decreased. In the case of the multiplicative up-
dating rule, the operator modifying the distribution Ln is commutative, which
implies that the order of the student’s responses to the problems does not mat-
ter: the distribution Ln is the same regardless of the order of the item-response
pairs (r1, q1), . . . , (rn−1, qn−1). The multiplicative updating rule operator is
defined by Equations (13.9) and (13.10). On each trial, the item presented to
the student is selected according to the half-split rule (cf. Definition 13.4.7).
This means that item q may be presented to the student on trial n if the
probability that the student has mastered item q is as close to .5 as possible,
according to the current probability distribution Ln; that is, |Ln(Kq)− .5| is
minimal. If two or more items gives the same minimal value, the algorithm
chooses randomly (from a uniform distribution) between them.

In the ALEKS system, for the data relevant to the analysis reported below,
the stopping rule was to end the assessment as soon as Ln(Kq) lies outside
the interval [.2, .8] for all items q.

17.3 The Methods

17.3.1 Outline. Cosyn and his colleagues performed three different types of
statistical analysis on their data, which are based on more than one hundred
thousand assessments taken from January 1, 2004 to July 1, 2007.

1) The first method quantifies the evolution of the information gathered
by the algorithm in the course of the assessment. Suppose that the sequence
of likelihood functions L1, . . . , Ln, . . . has been kept in memory for each as-
sessment. Each of the likelihood values Ln(Kp) subsumes the information
concerning p accumulated by the algorithm up to trial n. Suppose temporar-
ily that there are no careless errors and that all the assessments have the
same length. (These assumptions are unrealistic and will be amended later
on.) From the standpoint of the assessment algorithm, Ln(Kp) is thus the
probability of a correct response to the extra problem p computed on trial n,
regardless of when p has actually been presented during that assessment. For
any trial n of every assessment, we thus have a pair (Ln(Kp), rp), where rp
is coded as 0 or 1 depending whether the response to the extra problem is
incorrect or is correct. Fixing the trial number, and varying the assessment
across the sample of students, the correlation between the Ln(Kp) and rp

10 The data analyses reviewed in 17.3.4 and 17.4.4 do not rely on that assumption.
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values can be computed. The authors of the study use the point biserial co-
efficient for this purpose, a choice dictated by the fact that Ln(Kp) can be
regarded as a continuous variable, while rp is a discrete one (for details about
this coefficient, see 17.8).

In reality, the length of the assessment may vary considerably across the
students tested. In the actual analysis, the correlation method sketched above
is adapted by aligning all the assessments appropriately, using the ‘Vincent
curves’ method (cf. Vincent, 1912, see Subsection 17.4.2). The results are the
first ones reported in the next section.

2) The second method is the obvious one. At the end of the assessment, we
can predict the student’s actual response (correct or incorrect) to the extra
problem p by checking whether or not p appears in the student’s knowledge
state selected by the assessment algorithm at the end of the test. We thus have
two dichotomic variables: (1) p is or is not in the student assessed state; (2) the
student’s reponse is or is not correct. The effectiveness of such predictions can
be evaluated using common measures of correlation between two dichotomous
variables, such as the tetrachoric coefficient or the phi-correlation coefficient,
two standard correlation indices. This analysis does not take possible careless
errors into account.

A variant of the above method, described in Subsection 17.4.4, uses the
same type of data, but corrects the predictions by a factor depending of the
probability that the student commits a careless error in responding to a par-
ticular problem. The correlation coefficient used is the point biserial. We shall
see that this results in a slight improvement of the correlations.

3) The third method is based on a different idea. At the end of most
assessments, the student may initiate learning by choosing an item in the
outer fringe of the state assigned by the assessment engine. In practice the
student is presented with a display in the form of a pie chart, the slices of
which correspond to the different parts of the scholarly material. Moving the
computer mouse on one of the slices prompts the opening of a window listing
those items of the outer fringe which concern this part of the material. The
student chooses an item by clicking on the appropriate location of the window.
The student may also select an item to learn by this method in a different
situation, that is, not just after an assessment, but in the course of learning
the subject matter. Suppose, for example, that K is the knowledge state of
the student, as determined by the assessment algorithm. The student chooses
some item q by the above method, and masters it. The new knowledge state
is then K ∪ {q}. If this new state is not the domain, it has an outer fringe,
and the student can choose a new item to learn, again by the same method.

If the knowledge state assigned to the student is the true one or at least
strongly resembles the true one, then the prediction of what the student is
capable of learning at that time should be sound. Accordingly, we can gauge
the validity of the assessments by the probability that the student successfully
masters an item chosen in the outer fringe of the assessed state. Cosyn and his
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collaborators have estimated such probabilities on the basis of a considerable
number of assessment/learning trials in elementary algebra. Subsection 17.4.5
contains the results.

17.3.2 Notation. We review and complete our notation, which slightly dif-
fers from, but is consistent with, those used by Cosyn et al. (2010). We recall
that, to each assessment corresponds one particular extra problem type.

We write:

Q for the set of items, or domain;
K for the collection of states of the learning space; thus K ⊆ 2Q;
A for the set of all the assessments in the sample; A = {a, b, . . . ,x, . . .};
x for a variable denoting an assessment in the set A;
Lx,n for the probability distribution on K on trial n of assessment x;
px for the extra problem asked in assessment x;
Nx for the last trial number in assessment x.

Note that the last trial number and the extra problem depend upon the
assessment rather than on the student because some students in the sam-
ple may have taken several assessments11. They also define the collection of
random variables

Rx =

{
0 if the student’s response to problem px is incorrect

1 otherwise
(17.1)

with x varying in A. Writing Rx = Rpx
does not involve any ambiguity

since any assessment x defines a unique extra problem px. A careless error
probability is attached to each problem. We denoted by

βq the probability of committing a careless error to problem q.

Thus, βq is the conditional probability that a student whose knowledge
state contains q commits a careless error in attempting to solve that problem.
It is assumed that the parameter βq only depends on the problem q and does
not vary in the course of an assessment. In accordance with the convention
used above for Rx, we use from now on the abbreviations

βx = βpx
, Kx = Kpx

.

We denote by Px,n the probability that a student correctly solves the extra
problem px, based on the information accumulated by the assessment algo-
rithm up to and including trial n of assessment x. Assuming that there are no
lucky guesses, this probability satisfies thus, for the nth trial of assessment x,
the equation:

Px,n = (1− βx)Lx,n(Kx). (17.2)

11 The authors do not take into account this aspect of the data. This is reasonable
considering the large size of their sample of assessments.
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17.3.3 Estimating the careless error parameters. The same item is oc-
casionally presented more than once in the course of an assessment: once as
the extra problem, and also as one or more regular items of the assessment12.
This makes it possible to estimate, for each item q, the careless error param-
eter βq without relying on the hypotheses of the learning space model. When
an item is presented more than once as a regular item of the assessment, only
the first presentation is retained for the analysis. For each item q, the data
takes the form of a 2× 2 matrix

Regular
item

0 1

0 x y
Extra problem

1 z w

in which 0 and 1 stand for ‘incorrect’ and ‘correct’ respectively. (Thus, z is
the number of cases in which the response to the extra problem was correct,
and that to the regular item was incorrect.) The estimation model used by
Cosyn et al. (2010) has two parameters, the probability βq of a careless error
to item q, and the probability κq that the knowledge state of the student
belongs to Kq. Denoting by pq(i, j) the probability of the case (i, j) in the
above table, with i, j ∈ {0, 1}, the model is defined by the four equations13:

pq(0, 0) = β2
qκq + (1− κq) (17.3)

pq(0, 1) = βq(1− βq)κq (17.4)

pq(1, 0) = (1− βq)βqκq (17.5)

pq(1, 1) = (1− βq)2κq. (17.6)

We thus have ∑
i,j

pq(i, j) = 1.

We now write Nq for the number of assessments having at least two pre-
sentations of item q, with one of them as the extra problem, and Nq(i, j) for
the number of times (i, j) is realized among the Nq assessments. Cosyn et al.
(2010) obtain the estimated values of βq (and also of κq, but this is of lesser
interest) by minimizing the Chi-square statistic

Chiq(βq, κq) =
∑
i,j

(Nq(i, j)−Nqpq(i, j))
2

Nqpq(i, j)
. (17.7)

We leave to the reader to work out the details (see Problems 1 and 3).

12 In such cases, different instances of the item are almost always presented.
13 We recall the the probability of a lucky guess is assumed to be zero.
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17.3.4 Aligning the assessments: The Vincent curves. Cosyn and his
collaborators have analyzed the temporal course of the assessments by track-
ing down the correlation between the probability Px,n = (1 − βx)Lx,n(Kx)
that the response to the extra problem px is correct and the 0-1 variable
Rx coding the actual response of the student to that problem (cf. Subsec-
tion 17.3.2). Each correlation is thus computed by keeping the trial num-
ber n constant and varying x, which denotes the assessment, in the pairs
(Px,n,Rx). If all the assessments had the same length N , these calculations
would be straighforward. However, the length of the assessments vary consid-
erably. The solution adopted by Cosyn et al. (2010) to deal with this difficulty
is a classical one: they have split each assessment into 10 parts, or ‘deciles’, of
(approximately) equal length, and aligned the assessments on the last trial of
each part. To be precise: the trial number retained for computing the correla-
tion in decile i (1 ≤ i ≤ 10) is the smallest integer not smaller than i×Nx/10.
They also included the initial trial in each assessment. As an illustration, the
trial numbers retained for the computation of the correlations are given in
the table below for three assessments a, b and c of respective lengths 17, 25
and 30. The 9th correlation (the correlation for the 8th decile) for some item
p would thus be based on trials 14, 20 and 24 of assessments a, b and c re-
spectively (the red column of the table) in which p has been presented as the
extra problem. For each extra problem, the evolution of the correlation is thus
traced throughout 11 trials, which are numbered 0, 1, . . . , 10 in the second
row of the table. The corresponding graph is usually referred as a Vincent
curve (from the original article implementing this method, which is due to
Vincent, 1912). Note that only .01% of the assessment were shorter than 11
trials. There were dealt with by a special rule. We omit the description.

Table 17.1. Trial numbers retained for the Vincent curve analysis for three assess-
ments a, b, and c of respective lengths 17, 25 and 30. The first column, headed by
the letter ‘A’, lists the assessments. Number 1 in rows 3, 4 and 5 denotes the initial
trials in each assessment; the other numbers are those of the last trials of each decile.

Trial numbers retained for the correlation analysis

A 0 1 2 3 4 5 6 7 8 9 10 Nx

a 1 2 4 6 7 9 11 12 14 16 17 17
b 1 3 5 8 10 13 15 18 20 23 25 25
c 1 3 6 9 12 15 18 21 24 27 30 30

17.3.5 Correlation coefficients used. The index chosen to compute the
correlation between the variables P and R is the point biserial coefficient

rpbis =
M1 −M0

sn

√
n1n0

n2
(17.8)

where
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n is the number of pairs (P,R),

sn is the standard deviation of the continuous variable P,

n1, n0 are the numbers of cases R = 1, R = 0, respectively,

M1,M0 are the conditional means of P given R = 1 and R = 0.

This coefficient is frequently used when one of the variables is continuous and
the other one discrete, as is the case here. It gives an estimate of a Pearson
correlation coefficient under some hypotheses regarding the joint distribution
of the two random variables involved (for details, see Tate, 1954, or any other
of the standard psychometric texts14).

Two different correlation coefficients have also been used for other parts
of the study, namely, the ‘tetrachoric’ and the ‘phi’ coefficients. We postpone
their introduction for the moment.

17.4 Data Analysis

17.4.1 The participants. The assessments were taken via the internet by
college or high school students (85% and 15%, respectively) typically in the
framework of a course, with some of the student taking more that one assess-
ment during the course. The numbers of students and of assessments differs
depending on the part of the study, as will be indicated.

17.4.2 Temporal evolution of the prediction. The Vincent curve analy-
sis of the correlation coefficient rpbis is limited to the initial part of the assess-
ment15, which uses 82 items selected from the 262 items forming the beginning
algebra course in the ALEKS system16. Of these 82 items, 12 items were dis-
carded because the relevant data was too meager for a reliable estimate of
the correlation coefficient. The data considered here concern the remaining 70
items and are based on 78, 815 assessments from 42, 857 students.

About 17 to 18 questions are asked during the first part, which may be
regarded as a placement test (after which the assessment is pursued without
the student being aware of any hiatus). This small number of questions must
be kept in mind when pondering the values reported for the correlations.
As mentioned in Subsection 17.3.4, the point biserial coefficient was used
to compute the correlation between the probability of a correct response to
the extra problem on trial n, which is specified by Equation (17.2), and the
actual response to that problem coded as 0 or 1. Two Vincent curves are
displayed in Figure 17.1. The blue curve traces the evolution of the medians

14 The Wikipedia entry for the concept ‘point-biserial coefficient’ is a good start.
15 The split of the assessment into two part is due to storage limitation in the PC’s.

For technical reasons, a substantial part of an assessment was taking place in the
client’s computer. (This is no longer true.) The extensive data required for the
Vincent curve analysis was only available for the initial part of the assessment.

16 At that time. This number is now somewhat larger.
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of the distributions of the point biserial coefficient, during the first part of
the assessment, for items having a careless error probability smaller than .25.
The red curve is similar, and concerns items with a careless error probability
exceeding .25.

Figure 17.1. Two Vincent curves of the median rpbis values correlating the prob-
ability of a correct response to the extra problem predicted by Equation (17.2) and
the variable Rx coding the response to that problem as 0 or 1 for ‘incorrect’ or
‘correct’. The number 0 on the horizontal axis marks the first trial of the assess-
ment. The number 1,. . . , 10 indicate the ten Vincent categories. The blue Vincent
curve describe the evolution of the median correlation for the 31 items having a
careless error probability smaller that .25. The red curve is similar and concerns the
remaining 39 items. (Reproduced with permission.)

The difference between the two curves stresses the importance of the care-
less errors and is remarkable. Cosyn et al. (2010) also compute the Vincent
curves of a few exemplary items with a careless error probability varying even
more widely. The two extreme cases were .13 and .49. While the first item
reaches a correlation value around .65 at the end of the assessment, the cor-
relation values for the other never exceed .2 and do not increase through the
assessment. Needless to say, as the authors recognize, such an item deserves
improvement. (They insistently make the point that items, being an integral
part of a curriculum, are rarely rejected, if at all.)

17.4.3 Prediction based on the final state. The Vincent curve analysis
from Cosyn et al. (2010) that we just summarized only concerns the initial
part of the assessment. The authors consider then the ultimate result of the
assessments, and investigate how well the final knowledge state selected by the
assessment engine predicts the response to the extra problem. For each item p,
the relevant data take the form of a 2× 2 matrix, with the two variables:

1. the extra problem p is or is not in the final state selected;
2. the response to the extra problem is correct or incorrect.
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Note that this does not take the careless errors into account (see the next
paragraph in this regard). These data are substantial, and based on 240,003
assessments performed between January 1, 2004 and July 1, 2007. They are
analyzed in terms of two correlation coefficients, the tetrachoric and the phi.
Both of them are adequate in that they were designed to deal with such double
dichotomies. However, neither of them is ideal because the hypotheses under-
lying their use do not fit the situation well (as the authors aknowledge17).

We reproduce below the covariation graph of the values of the tetrachoric
and the phi coefficient for each of the 250 items. Each point of the graph
represents an item, the coordinates of which are the values of the two corre-
lation coefficients for that item. The median correlations for both indices are
indicated on the graph. They are: .67 for the tetrachoric, and .35 for the phi
coefficient. In both cases, the correlations for the grouped data, obtained from
the 2× 2 matrix resulting from adding the corresponding numbers in each of
the four cells in the 250 individual item matrices, are much higher, namely
.81 and .57. Note that these results were obtained without consideration of
the careless errors, which we already know to be substantial for some items.

Correlation between the Tetrachoric and the Phi coefficient values (255 items) 
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Figure 17.2. Covariation graph of the values of the tetrachoric and the phi coeffi-
cients for the 250 items in beginning algebra. (Reproduced with permission.)

17 The tetrachoric index is an approximation of the Pearson correlation coefficient.
It is based on the hypothesis of an underlying pair of random variables, with
a joint Gaussian distribution. This is hardly satisfied here. The use of the phi
coefficient is predicated on similar assumptions. (Chedzoy, 1983; Harris, 1983, in
Volumes 6 and 9, respectively, of the Encyclopedia of Statistical Sciences).



370 17 Analyzing the Validity of an Assessment

All the representing points of items are below the diagonal, showing that
the values of the tetrachoric are inflated in comparison with those the phi
coefficient, which is a standard finding. The substantially higher tetrachoric
and phi correlation values obtained for the grouped data is not an artifact.
An illustration of this phenomenon is given in Table 17.2 in the case of the
grouping of the data matrices of two items, one being easy and the other one
difficult. The three matrices are displayed in the table. We can see that the
grouping results in putting relatively high numbers in the two (0, 0)–(1, 1)
cells and thus boosting the correlation.

Table 17.2. The correlation matrices, one pertaining to an easy item on the left,
and the other to difficult item on the right. The ‘In’ and ‘Out’ labeling the columns
refer to the ‘In the state’ and ‘Not in the state’ cases. The third matrix below
combines the data of the two top matrices.

Difficult

In Out

Correct 7 18 Tetra: .751

Incorrect 4 280 Phi: .359

Easy

In Out

Correct 267 4 Tetra: .742

Incorrect 22 8 Phi: .385

Grouped

In Out

Correct 274 22 Tetra: .969

Incorrect 26 288 Phi: .842

17.4.4 Adjusting for careless errors. The authors further refine their anal-
ysis by taking the careless errors into account as a weighting factor. They
introduce, for each item x, a variable

Sx =

{
1− βx if the final state contains the extra question x

0 otherwise.

Using the point biserial coefficient, they compute for the grouped data the
correlation between the variables Sx and Rx. The value reported is .61, thus
slightly higher than the .57 obtained for the phi coefficient for the same
grouped data.

The .61 value obtained for the grouped data of the point biserial coef-
ficient is noteworthy in comparison with the point biserial values reported
by the Educational Testing Services (ETS) (2008) report18 for the Algebra I

18 Produced for the California Department of Education (Test and Assessment Di-
vision). See http://www.cde.ca.gov/ta/tg/sr/documents/csttechrpt07.pdf.
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California Standards Test (CST), which covers roughly the same curriculum
as the ALEKS assessment for elementary algebra and is given to more than
100 000 students each year. The Algebra I CST is comprised of 65 multiple
choice questions (items) and is constructed and scored using Item Response
Theory (IRT), for which the point biserial coefficient is a standard measure. In
particular, for each of the 65 items, a point biserial item-test correlation was
computed, which measured the relationship between the dichotomous vari-
able giving the 1/0 item score (correct/incorrect) and the continuous variable
giving the total test score (see p. 397 of the ETS report referenced above).
For the 2007 administration of the Algebra I CST, the mean point biserial
coefficient for the 65 items was .36, and the median was .38 (see Table 7.2,
p. 397 of the ETS report). The minimum coefficient obtained for an item was
.10 and the maximum was .53 (Table 7.A.4, pp. 408–9, of the ETS report).
The averages for preceding years on the test were similar, namely, the mean
point biserial coefficients were .38 in 2005 and .36 in 2006 (see Table 10.B.3,
pp. 553, of the same report).

The average correlation obtained by Cosyn et al. (2010) for the ALEKS

assessments is only slightly above that reported in the ETS report. How-
ever, Cosyn et al. (2010) argue that no selection of items took place in the
ALEKS case. By contrast, the items having a point-biserial correlation below
.19 in a trial run were removed from the test in the ETS study. Moreover,
only around 25–35 questions were asked in the ALEKS assessments, which is
roughly half of the number of questions asked in the ETS test.

Finally, and most importantly, it must be recalled that in the case of the
ALEKS system, the choice of the extra problem is actually the choice of an
instance for that problem. In other words, this involves the random choice of
a specific question to ask in a very large set, the size of which is the sum of
all the instances in each of the possible extra problems. According to Cosyn
et al. (2010), the size of this set is of the order of 100, 000 different instances.
In the case of the Educational Testing Services (ETS) (2008) study, the com-
parable random choice is made in a set of 65 items (that is, instances in the
ALEKS terminology19).

17.4.5 Learning success. In the ALEKS system, at the end of an assessment,
the student is offered to start learning by choosing an item in the outer fringe
of his state. In the framework of learning space theory, the student should be
ready to learn such an item at that time. This choice initiates a process during
which the student works on various instances of the item and studies the
explanations given. This process is actually a random walk with two absorbing
barriers. The walk moves right or left depending on whether the student solves
or fails to solve an instance. Hitting the left barrier signifies a failure to solve
the item, while hitting the right one means success. In either case, the student’s
knowledge state is readjusted, and an item in the new outer fringe is then

19 Remember that, in psychometrics, the term ‘item’ corresponds to what is called
an instance in Knowledge Space Theory.
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chosen by the student to continue learning (for details, see Cosyn et al., 2010,
Chapter 2).

The probability that a student masters an item—that is, hits the right
barrier of the corresponding random walk—provides an indirect way of gaug-
ing the validity of an assessment. Presumably, if the assessment is on target,
then such probabilities should be high.

Figure 17.320 displays the distribution of the estimated probabilities of
successfully master 256 items of beginning algebra (when chosen in the outer
fringe of a student’s state). It is clear that most items are satisfactorily han-
dled. The graph shows that 80% of the items have a probability of success of
at least .8, the median of the distribution being around .92. However, the left
tail of the distribution indicates that some problems are not learned easily
and that adjustments deserve to be made. The data analyzed are based on
1, 564, 296 such random walks.

Conditional probability of learning success

Figure 17.3. For the 256 items in elementary algebra (out of 262), the distribution
of the estimated values of the conditional probabilities that a student, having chosen
an item in the outer fringe of his state, hits the right barrier of the random walk.
The problem is then regarded as having been mastered.

20 This figure is reproduced from Chapter 2 in Cosyn et al. (2010), with permission.
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17.5 Summary

This chapter reviews the results of an application of learning space theory
reported by Cosyn et al. (2010). The focus of the study is the validity (or pre-
dictive power) of the assessment. The scholarly subject is beginning algebra.
The data concern a large number of assessments taken by college and high
school students from 2004 to 2007. Three methods are used in the analysis.
The first two rely on correlation indices and are based on the extra problem
procedure: in each assessment, and extra problem is proposed to the student,
the response to which is not used for assessment purposes but can be predicted
on the basis of the assessment results.

1) Using Vincentized data, the first method analyzes the evolution of the
correlation between: (i) the probability of a correct response to the extra prob-
lem based on the information accumulated by the assessment up to a point
varying in 10 Vincent deciles categories plus the initial trial; and (ii) the actual
response to that extra problem. Two different Vincent curves are computed,
each involving the same 11 categories. The first curve concerns the 31 items
having a careless error probability smaller .25. Figure 17.1 shows that the me-
dian correlation for these items evolve from around .2 on trial 1, to about .425
in the last Vincent category. The second curve of Figure 17.1 traces the evolu-
tion of these correlations for the remaining 39 items. The median correlation,
which is initially roughly the same as that of the previous curve, increases
then smoothly up to about .325. These statistics are based on the first phase
of the assessment, which only uses 82 out of the 262 items of the elementary
algebra domain of the ALEKS system at that time21. It is noteworthy that, in
any actual assessment, only about 17-18 items, on the average, are proposed
to the students during this initial phase of the assessment.

2) The second method analyzes the correlation between the response to
the extra problem and the prediction made on the basis of the final knowl-
edge state obtained at the end of the assessment. Two variants are considered.
The first one does not take the possibility of careless errors in computing the
prediction. For each item, the data take to form of a 2 × 2 matrix with the
two variables: 1. the extra problem p is or is not in the final state selected;
2. the response to the extra problem is correct or incorrect. Two correlation
indices, the tetrachoric and the phi, are used for 250 items out of 262. (Ac-
cording to the authors, the data for the remaining 12 items were too scarce
to provide reliable estimates of the coefficients.) The covariation graph of the
values of the two coefficient reveals the following most salient facts.

(i) The median correlation values are .67 for the tetrachoric, and .35 for
the phi coefficient. The much higher values obtained for the tetrachoric
coefficient is not surprising in view the literature on the two indices.

21 Today, the number of items for the elementary algebra domain used in the
ALEKS system is around 350.
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(ii) In both cases, the correlations for the grouped data, obtained from the
2 × 2 matrix resulting from adding the corresponding numbers in each
of the four cells in the 250 individual item matrices, are much higher,
namely .81 and .57. An example shows that such an increase should not
be surprising.

(iii) For both indices, the values of the coefficients vary considerably across
items; for example from 0 to about .86 for the the phi coefficient. A much
needed improvement is thus required for some items. Overall, it appears
that the correlation values compare quite favorably with a similar anal-
ysis of a psychometric test, for the same elementary algebra curriculum,
reported in Educational Testing Services (ETS) (2008).

These results were obtained without consideration of the careless errors, which
we already know to be substantial for some items. When careless error prob-
abilities estimated from the data are brought into play, the correlation values
for both indices are slightly larger.

3) The third method relies on a different type of data, namely, the proba-
bility for a student to master an item chosen in his outer fringe. These prob-
abilities have been computed by Cosyn and his colleagues on a very large
sample of cases, involving 1, 564, 296 learning occasions. The data shows that
80% of the items have a probability of learning success of at least .8, the me-
dian of the distribution being around .92. However, they also reveal that a few
problems are not learned easily and that adjustments deserve to be made.

Problems

1. The Chi-square statistic defined by Equation (17.7) can be minimized
for the values of the parameters βq and κq by a standard optimization
algorithm, but Cosyn et al. (2010) proceed differently, and directly. Find
the estimation equation for βq and κq analytically. (Hint: you may want
to use the Lagrange multipliers method.)

2. What are the weaknesses of the model defined by Equations (17.3)-(17.6),
if any, with respect to the problem considered, that is, the estimation of
the careless errors? Another possibility for such estimations is to use the
final state, and estimate the conditional probability of an error to the
extra problem q given that q belongs to the final state. Work out the
details of this method. What are its drawbacks, if any?

3. Assume that the probability of lucky guess to problem q is equal to some
number γq > 0, a parameter. Thus, γq is the probability of a correct
response to item q, even though this item does not belong to the student
state. Can the model defined by Equations (17.3)–(17.6) be adapted to
estimate γq? What are the drawbacks, if any?
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Open Problems

We have gathered a number of problems in the course of our investigations,
which we have left unsolved. We list them below for the interested reader,
with relevant references when available.

18.1 Knowledge Spaces and ∪-Closed Families

18.1.1 On large bases. Let Q be a domain with a finite number m of items.
Consider all the bases of knowledge spaces on Q. What is the largest cardinal-
ity of a base as a function of m ? What are all the knowledge bases on Q having
a base of that cardinality? A manuscript of R.T. Johnson and T.P. Vaughan
contains results for small values of m. (It is the extended preprint version of
Johnson and Vaughan, 1998).

18.1.2 Defining a knowledge spaces by a language. Let K be a discrim-
inating knowledge space. Does there always exist some assessment language
(in the sense of 9.2.3) describing K but no other knowledge space? Or better,
describing no other knowledge structure?

18.1.3 Projections and bases. Let K be a knowledge space on the domain
Q and for any nonempty subset Q′ of Q denote by K′ the projection of K on
Q′ (cf. Theorem 13.7.4). Find necessary and sufficient (interesting) conditions
on the knowledge space K implying that the space K′ always has a base.
Conditions that are only sufficient would also be of interest if they cover a
wide variety of examples (among which the finitary spaces).

18.1.4 Uniqueness of a Hasse system. Characterize efficiently the gran-
ular knowledge spaces that admit a unique Hasse system (see end of Sec-
tion 5.5).

J.-C. Falmagne, J.-P. Doignon, Learning Spaces, 
DOI 10.1007/978-3-642-01039-2_18, © Springer-Verlag Berlin Heidelberg 2011 
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18.1.5 Frankl’s Conjecture. A famously difficult problem asks whether for
any finite union-closed family K with ∪K finite and K 6= {∅}, there always
exists some element in ∪K that belongs to at least half of the subsets in K.
This is often referred to as Frankl’s conjecture. A good access to the literature
is the Wikipedia entry for “Union-closed sets conjecture.” It should be com-
plemented with Johnson and Vaughan (1998). (Warning: the risk of wasting
precious research time is high.)

18.2 Wellgradedness and the Fringes

18.2.1 Strengthening [L1] and [L2]. Lemma 2.2.7 asserts that any well-
graded partially union-closed family is a partial learning space, and that the
converse implication does not hold. Find axioms that strengthen (or at least
are in the spirit of) Axioms [L1] and [L2] that characterize well-graded par-
tially union-closed families.

18.2.2 About the fringes economy. The fringes of a state in a learning
space were defined in 4.1.6. The concept was introduced informally earlier,
in Section 1.1.5, and presented there as a device permitting an economical
representation of the states. Consider the following parameter for measuring
the overall economy realized by such a representation: the sum of the sizes of
all the states minus the sum of the sizes of all the fringes. (Another parameter
is obtained when we divide that difference by the number of states.) It is not
difficult to find examples in which the fringe representation of states is not
economical at all (that is, in which the parameter takes a negative value). On
the other hand, for what kind of learning space is the economy:

(i) maximal in the sense that for a fixed number of items, the parameter takes
the largest possible value)?

(ii) minimal (for a fixed number of items, the parameter takes the smallest
possible value)?

18.2.3 Characterize fringes mappings. Characterize those mappings
K 7→ (KI,KO), K 7→ KI ∪KO, K 7→ KI, etc. arising from learning spaces.
Which learning spaces are completely specified by any such mappings (one or
more of them)? The same problem can be raised for well-graded families.

18.2.4 Characterize well-graded spans. Theorem 4.5.8 characterizes those
families whose span† is well-graded. However the characterization refers ex-
plicitly to the span†. Find a characterization solely in terms of the spanning
family.
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18.3 About Granularity

18.3.1 Dropping the granularity assumption. Does the conclusion of
Theorem 5.5.6 still hold when granularity is not assumed? (cf. Remark 5.5.7(a)).

18.3.2 Characterize granular attributions. In 8.5.2, we defined the con-
cept of a granular attribution by the property that such an attribution pro-
duces a granular knowledge space. So far, we do not have a direct characteri-
zation of this concept.

18.4 Miscellaneous

18.4.1 The width and the dimension of a surmise system. Surmise
systems and AND/OR graphs (cf. Definitions 5.1.2 and 5.3.1) are two aspects
of a same generalization of partially ordered sets. Concepts which are classical
for partially ordered sets can, in principle, be extended to surmise systems.
This generates a large collection of problems. For instance, what would be ap-
propriate extensions of classical concepts such as the ‘width’, the ‘dimension’,
etc. of a partial order? Do central theorems about these concepts remain true
for the extended situation? (A first pass at some of these problems was made
in Doignon and Falmagne, 1988.)

18.4.2 About the set differences for projections. Under wich conditions
on a knowledge structure (Q̊, K̊) are all the differences S(a,K)\S(a,K ∪{b})
empty, for all the projections (Q,K) of (Q̊, K̊)? (Cf. Example 12.7.2).
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Standard symbols

d≈ approximately distributed as
⇔, iff the logical equivalence standing for ‘if and only if’
∧, ¬ the logical conjunction and the logical negation ‘not’
∧ni=1 the logical conjunction of n statements indexed

1, 2, . . . , n
∃,∀ existential and universal quantifiers
∅ empty set
∈,⊆,⊂,⊃,⊇ set membership, set inclusion, proper (or strict)

set inclusion, and the reverse inclusions
∪, ∩, \, 4 union, intersection, difference, and symmetric

difference of sets
+,
∑

may stand for the ordinary addition or for the union
of disjoint sets

f(B) if B is a set and f a function, the image of B by f
|X| number of elements (or cardinal number) of a set X
2X power set of the set X (i.e., the set of all subsets of X)
X1 ×X2 × · · · ×Xn Cartesian product of the sets X1,X2, . . . , Xn

N the set of all natural numbers (excluding 0)
N0 the set of nonnegative integers
Q the set of all rational numbers
R the set of all real numbers
R+ the set [0,∞[ of all nonnegative real numbers
Z the set of all integers
P a probability measure
]x, y[ open interval of real numbers {z ∈ R x < z < y}
[x, y] closed interval of real numbers {z ∈ R x ≤ z ≤ y}
]x, y], [x, y[ real, half open intervals

R̆ Hasse diagram of a partial order R
t(R) transitive closure of a relation R

marks the end of a proof
♦ marks the end the proof of a lemma inserted in

the proof of a theorem
l.h.s., r.h.s. abbreviations for ‘left-hand side’ and ‘right-hand side’

(of a formula)
r.v. abbreviation for ‘random variable’
w.r.t. abbreviation for ‘with respect to’

J.-C. Falmagne, J.-P. Doignon, Learning Spaces, 
DOI 10.1007/978-3-642-01039-2, © Springer-Verlag Berlin Heidelberg 2011 
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Non Standard Technical Terms1

In the notation ‘〈k → j〉’ appearing in an entry, ‘k’ refers to the numerical
marker of the relevant chapter, section or subsection and ‘j’ to the correspond-
ing page number. Words or phrases set in blue appear elsewhere as entries in
this glossary. The C superscript signifies that the entry refers to media theory.

accessible. A family of sets K satisfying Axiom [MA] of an antimatroid. Such
a family is also said to be downgradable. 〈2.2.2 → 27〉
acyclic attribution. An attribution σ is acyclic when the relation Rσ defined
by the equivalence qRσq

′ ⇐⇒ ∃C ∈ σ(q′) : q ∈ C (for q, q′ ∈ Q) is acyclic.
〈5.6.10 → 98〉
adjacentC. Two distinct states S and V in a medium are adjacent if there
exists a token τ such that Sτ = V . 〈10.1.2 → 166〉
alphabet. In Chapter 9, a set Q of symbols pertaining to a language. The
elements of Q are called positive literals. The negative literals are the elements
of Q marked with an overbar. Both positive and negative literals are used to
write the words of the language. 〈9.2.1 → 155〉
antecedent set. The set A appearing as the first component of a query (A, p).
〈Section 15.1 → 298〉
antimatroid. Another name for a learning space used in the combinatoric
literature and defined there by different axioms. The dual structures are also
called ‘antimatroid.’ Thus the union-closed antimatroids are the well-graded
knowledge spaces 〈2.2.2 → 27〉 and the intersection-closed antimatroids are
the duals. The latter are also called ‘convex geometries.’

apexC. A state S is the apex of an oriented medium (S,T) if Ŝ = T̂+, that
is, if the content of S is made of all the positive tokens in T. 〈10.5.11 → 182〉
ascendent family. Consider a knowledge structure (Q,K), a subset Q′ of
Q and a state W in the projection K|Q′ of K on Q′. The ascendent family
K(Q′,W ) of W is the subfamily of all the states of K whose trace on Q′ is W .
Formally, we have K(Q′,W ) = {K ∈ K K ∩Q′ = W}. 〈13.7.1 → 259〉
assessment. The process of uncovering the competence of an individual in a
domain of information 〈Section 1.3 → 10〉.
assessment language for a collection K ⊆ 2Q. 〈9.2.3 → 155〉 A language
L over the alphabet Q that is empty if |K| = 0, has only the word 1 if |K| = 1,
and otherwise satisfies L = qL1 ∪ q̄L2, for some q in Q, where

[A1] L1 is an assessment language for the trace (Kq)|Q\{q};
[A2] L2 is an assessment language for the collection Kq̄ with domain Q\{q}.

1 Defined terms in the theory expounded in this book which do not belong to the
standard mathematical lingo.
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assessment module. The part of a computer educational software, such as
the ALEKS system, that is devoted to the assessment of students’ competence
in a subject. 〈Section 1.3 → 10〉
assigned. For any item q in Q, the subset τ(q) of S is referred to as the set
of skills assigned to q by the skill map. 〈6.2.1 → 106〉
association (relation). A mapping from the collection 2Q \ {∅} of all
nonempty subsets of a domain Q to Q 〈8.6.1 → 147〉. If K is a knowledge
space, then its derived entailment is an example of association 〈7.1.6 → 123〉.
atom. A set B in a family of sets F is an atom at some q in ∪F if B is a
minimal set in F for the property of containing q 〈3.4.5→ 48〉. (‘Minimal’ is to
be understood with respect to set inclusion.) In a knowledge space equipped
with a base, the atoms are exactly the elements of the base 〈3.4.8 → 48〉.

attribution. A function σ mapping a domain Q into 22Q (thus linking any
element of Q to some family of subsets of Q) satisfying the condition that
σ(q) 6= ∅ for any q ∈ Q. 〈5.1.2 → 83〉
attribution order. 〈5.5.1 → 92〉 A relation - on the collection F of all
attributions on a nonempty set Q defined by the equivalence

σ′ - σ ⇐⇒ ∀q ∈ Q,∀C ∈ σ(q),∃C ′ ∈ σ′(q) : C ′ ⊆ C (σ, σ′ ∈ F).

ball. For a state K in a knowledge structure (K, Q), the set of all states whose
distance from K is at most h is called the ball of radius h centered at K. It
is denoted by N(K,h). We have thus N(K,h) = {L ∈ K d(K,L) ≤ h}. This
set is sometimes referred to as the h-neighborhood of K. 〈4.1.6 → 63〉
base of a ∪-closed family F. A minimal subfamily B of F spanning F,
where ‘minimal’ is meant with respect to set inclusion: if H also spans F for
some H ⊆ B, then H = B. 〈3.4.1 → 47〉
base†. A concept similar to the base that is instrumental for partial knowledge
spaces 〈Page 262〉.
basic local independence model. A basic probabilistic model satisfying
local independence 〈11.1.2 → 189〉. The added qualifier “with no guessing”
means that, in such a model, all the lucky guess probabilities are assumed to
be equal to zero 〈11.3.6 → 198〉.
basic probabilistic model. A quadruple (Q,K, p, r), in which (Q,K, p) is a
probabilistic knowledge structure and r its response function. 〈11.1.2 → 189〉
binary classification language (over a finite alphabet Q). A language
L which either consists of the empty word alone or satisfies the two following
conditions 〈9.2.4 → 156〉:

[B1] a letter may not appear more than once in a word;
[B2] if π is a proper prefix of L, then there exist exactly two prefixes of the

form πα and πβ, where α and β are literals; moreover ᾱ = β.
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block. The QUERY routine proceeds by ‘blocks’: first Block 1, then Block 2,
etc. The responses APq with |A| = k appear in Block k. 〈15.1.2 → 299〉
bounded path. In a knowledge structure, a family of states connecting two
states and satisfying certain conditions stated in 〈4.3.3 → 70〉.
canonicalC. A message m in an oriented medium is called canonical if it is
concise and satisfies one of the following three conditions 〈10.5.5 → 180〉:

(i) it is positive, that is, contains only positive tokens;
(ii) it is negative, that is, contains only negative tokens;
(iii) it is mixed, that is, of the form m = nn′ where n is a positive message

and n′ a negative one.

careless error probability. The probability that a student in state K makes
an error in responding to an instance of an item in K 〈pages 188, 362-364〉.
cast as. Used in the sense of “assigned the role of”, as in: “The relation R is
cast as the attribution σ.” 〈5.1.4 → 84〉
child, Q′-child, plus child. The children of the partial knowledge structure
(Q,K) are specified by a proper subset Q′ of Q. Define the equivalence relation
∼Q′ on K by the formula L ∼Q′ K ⇐⇒ L ∩Q′ = K ∩Q′. Denote by [K] the
equivalence class containing the state K. With K ∈ K, the set

K[K] = {M ⊆ Q ∃L ∈ [K],M = L \ (∩[K])}
is a child, or a Q′-child, of K 〈2.4.2 → 32〉. For any non trivial child K[K] of

K, we call K+
[K] = K[K] ∪ {∅} a plus child of K 〈2.4.11 → 37〉.

classification. A nomenclature {K|Qi 1 ≤ i ≤ k} of a knowledge structure
(Q,K) is a classification if {Q1, . . . , Qk} is a partition of the domain Q.
〈11.8.1 → 209〉
clause for an item q. Any C ∈ σ(q) where σ is an attribution. A clause for
q is also called a foundation of q. 〈5.1.2 → 83〉
closedC. An oriented medium is closed if for any state S and any two distinct
tokens τ and µ, both effective for S, we have Sτµ = Sµτ . 〈10.5.1 → 179〉
closed under intersection. See intersection-closed family.

closed under union, closed under finite union. See union-closed family.

∪–closure. Property of being union-closed 〈2.2.2 → 27〉. (See also partial
∪–closure.)

closure space. A family of subsets of a set which is closed under intersection.
〈3.3.1 → 46〉
closure of a set. In the context of a closure space (Q,L), the closure of a
set A ⊆ Q is the unique set A′ in L including A that is minimal for inclusion
in L. For any A,B ⊆ Q, we have: (i) A ⊆ A′; (ii) A′ ⊆ B′ when A ⊆ B;
(iii) A′′ = A′. 〈3.3.4 → 46〉
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collection. A family of sets (or of other specified objects). 〈3.3.1 → 46〉
compatible knowledge structures. A knowledge structure (Y,F) is com-
patible with a knowledge structure (Z,G) if, for any F ∈ F, the intersection
F ∩ Z is the trace on Y of some state of G. 〈7.3.5 → 126〉
competency for an item q in a skill multimap (Q,S;µ). Any set be-
longing to µ(q). 〈6.5.1 → 112〉
conciseC message. A message in a medium is concise if it is stepwise effec-
tive, consistent, and has no token occuring more than once. 〈10.1.3 → 167〉
conjunctive model. See delineated.

1-connected. A finite knowledge structure (Q,K) is 1-connected if there is
a stepwise path between any two of its (distinct) states. 〈4.1.3 → 62〉
consistentC message. In a medium, a message is consistent if it does not
contain both a token and its reverse. 〈10.1.3 → 167〉
contentC of a message. The set containing all the distinct tokens in that
message. 〈10.3.1 → 169〉
convex updating rule. A special kind of non permutable updating rule.
〈13.4.2 → 250 to 250〉
critical state. In a knowledge structure, a state K is critical for a state L if
the inner fringe of L is some singleton {q} and K = L \ {q}. 〈16.1.1 → 336〉
delineated knowledge state. Let (Q,S, τ) be a skill map with T a subset
of S. A knowledge state K is delineated by T (via the disjunctive model) if
K = {q ∈ Q τ(q) ∩ T 6= ∅} 〈6.2.1 → 106〉. Such a state K is delineated via
the conjunctive model if K = {q ∈ Q τ(q) ⊆ T} 〈6.4.1 → 110〉.
derived quasi ordinal space. 〈3.8.6→ 58〉 In the context of Theorem 3.8.5,
the quasi ordinal space K defined from a relation Q on a domain Q by the
equivalence K ∈ K ⇐⇒ (∀(p, q) ∈ Q : q ∈ K ⇒ p ∈ K). The term “derived”
is also used in a similar sense in the context of surmise systems and surmise
functions 〈5.2.1 → 85〉, and in Chapter 8 〈8.4.5 → 144 and 8.6.1 → 147〉.
describe (a word describes a state). In Chapter 9, a word is a string
belonging to a language. Such a word describes a knowledge state in a knowl-
edge structure if it specifies the state exactly 〈9.2.7 → 157〉. For instance, the
word āed specifies the state {b, c, d, e} in the knowledge structure

G =
{
∅, {a}, {b, d}, {a, b, c}, {b, c, e}, {a, b, d},

{a, b, c, d}, {a, b, c, e}, {b, c, d, e}, {a, b, c, d, e}
}
.

descriptive language. 〈9.2.7→ 157〉 A language L is a descriptive language
for a partial knowledge structure K when

[D1] any word of L describes a unique state in K;

[D2] any state in K is described by at least one word of L.
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discrepancy distribution. For two spaces K and K′, the distribution fK,K′
of the (minimum) distances from the states in K to the states in K′ is called
the discrepancy distribution from K to K′. 〈15.4.5 → 318 to 320〉
discrepancy index. The discrepancy index from a knowledge structure K

to a knowledge structure K′ is defined by the mean

di(K,K′) = 1
|K|
∑h(Q)
k=0 kfK,K′(k), (h(Q) = b 1

2 |Q|c),
of the discrepancy distribution fK,K′ from K to K′, where Q is the common
domain of K and K′. 〈15.4.5 → 318 to 320〉
discriminative. A knowledge structure is discriminative if every notion is a
singleton 〈2.1.5 → 24〉. A surmise system (Q, σ) is discriminative if whenever
σ(q) = σ(q′) for some q, q′ ∈ Q, then q = q′. In such a case, the surmise
function σ is also called discriminative 〈5.1.2 → 83〉.
discriminative reduction. See reduction.

disjunctive model. See delineated.

domain of a (partial) knowledge structure. The set of all its items. If K
is a (partial) knowledge structure, the domain of K is ∪K. 〈2.1.2 → 23〉
downgradable. A synonym of accessible. A nonempty family of sets F is
downgradable if for every nonempty S ∈ F, there exists T ∈ F such that
S \ {q} = T for some q ∈ S. 〈2.2.2 → 27〉
dual. The dual of a knowledge structure K is the knowledge structure K̄

containing all the complements of the states of K. Here, ‘complement’ is to be
understood with respect to the domain ∪K (in the set-theoretical meaning).
〈2.2.2 → 27〉
effectiveC. (See also ‘stepwise effective.’) In a medium, a message m is ef-
fective for a state S if Sm 6= S. 〈10.1.3 → 167〉
entail relation for a nonempty set Q. A relation Q on 2Q \{∅} satisfying
Conditions (i), (ii) and (iii) in Theorem 7.1.5. 〈7.2.2 → 124〉
entailment for a nonempty set Q. Any relation P from 2Q \ {∅} to Q
that satisfies Conditions (i) and (ii) in Theorem 7.1.3. 〈7.1.4 → 122〉
essential distance between two states. This concept applies to non nec-
essarily discriminative knowledge structures. The essential distance between
two states K and L is defined by e(K,L) = |K∗ 4 L∗|, where K∗ (resp. L∗)
is the set of all notions q∗ with q in K (resp. q in L). 〈2.3.1 → 30〉
fair stochastic assessment process. In the Markov chain procedure of
Chapter 14, the case in which the probabilities of lucky guesses are all equal
to zero; thus ηq = 0 for any item q. 〈14.2.2 → 279〉
finitary. A knowledge structure is finitary if the intersection of any chain of
states is a state 〈3.6.1 → 52〉. A closure space is ∩-finitary if the union of any
chain of states is a state 〈Problem 13 on page 60〉.
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finitely learnable 〈4.4.2 → 72〉. A discriminative structure is finitely learn-
able if there is a positive integer l such that, for any state K and any item
q /∈ K, there exists a positive integer h and a chain of states K = K0 ⊂ K1 ⊂
· · · ⊂ Kh satisfying the two conditions:

(i) q ∈ Kh;
(ii) d(Ki,Ki+1) ≤ l, for 0 ≤ i ≤ h− 1.

foundation of an item q. See clause.

fringe. The fringe of a state K in a knowledge structure is the union of the
inner and outer fringes of K, that is, the set KF = KI ∪KO. 〈4.1.6 → 63〉
gradation, ∞-gradation. In a finite knowledge structure, a gradation is a
tight path from the empty set to the domain 〈4.1.3 → 62〉. A similar concept
applies in the infinite case where it is called an ∞-gradation 〈4.3.1 → 69〉.
granular. A knowledge structure is granular if for every state K, any item q
in K has an atom at q included in K. 〈3.6.1 → 52〉
guessing probability. See lucky guess probability.

half-split questioning rule. An item q selected by this rule on trial n of
an assessment minimizes the quantity |2Ln(Kq)− 1|, where Ln is the current
probability distribution on the set K of states. If two or more items satisfy
this condition, the algorithm chooses randomly between them. 〈13.4.7→ 252〉
ε-half-split. A special case of the questioning function in the Questioning
Rule Axiom [QM]. 〈14.3.2 → 280〉
hanging, almost hanging. 〈16.1.1 → 336〉 In a knowledge structure, a
nonempty state K having an empty inner fringe is called a hanging state.
A state K is almost hanging if it has at least two items and its inner fringe is
a singleton.

hanging-safe. A query (A, q) is hanging-safe (for a learning space) if there
is no clause C for some item r with A ∩ C = {r} and q ∈ C. 〈16.1.9 → 338〉
Hasse system. 〈5.5.8→ 94〉 Generalization of a Hasse diagram 〈1.6.8→ 15〉.
This concept applies to granular knowledge spaces.

height of an item. The height of an item q is the number h(q) = k − 1,
where k is the size of a minimal state containing the item q. A height of zero
for an item q means that {q} is a state. 〈15.4.4 → 317〉
incidence matrix. 〈14.7.1 → 293〉 For a collection K of subsets of the finite
domain Q of items, the matrix M = (Mq,K) whose rows are indexed by items
q in Q, columns are indexed by states K in K, and

Mq,K =

{
1 if q ∈ K,
0 otherwise.
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inclusive mesh. A mesh K of two knowledge structures F and G is called
(union) inclusive if F ∪G ∈ K for any F ∈ F and G ∈ G. 〈7.4.5 → 128〉

inconsistentC. A message in a medium is inconsistent if it contains both
some token and its reverse. 〈10.1.3 → 167〉

ineffectiveC. A message is ineffective for a state if it is not effective for that
state. 〈10.1.3 → 167〉

independent states, projections. Let (Q,K, p) be a probabilistic knowl-
edge structure, and let P be the induced probability measure on the power
set of K. With Q′, Q′′ ⊂ Q, consider the probabilistic projections (Q′,K′, p′)
and (Q′′,K′′, p′′). Two states J ∈ K′, L ∈ K′′ are independent if the events
J� = {K ∈ K K ∩ Q′ = J} and L� = {K ∈ K K ∩ Q′′ = L} are inde-
pendent in the probability space (K, 2K,P). The projections (Q′,K′, p′) and
(Q′′,K′′, p′′) are independent if any state K ∈ K has independent traces on
Q′ and Q′′. 〈11.9.1 → 210〉

informative (equally). Two items belonging to the same notion are called
equally informative. 〈2.1.5 → 24〉

informative questioning rule. An item selected on trial n according to
this rule and presented to the subject minimizes the expected entropy of the
likelihood distribution on the set of states on trial n+ 1. 〈13.4.8 → 253〉

inner fringe. In a knowledge structure (Q,K), the inner fringe of a state K
is the set KI = {q ∈ K K \ {q} ∈ K}. 〈4.1.6 → 63〉

inner questioning rule. An abstract constraint on the questioning rule
requiring that an item q be chosen so that the likelihood of a correct response
to q is as far as possible from 0 or 1. 〈13.6.4 → 257〉

instance. 〈1.1.1 → 2〉 A particular case of an item that can be used in an
assessment, for example by replacing the abstract parameters of an equation
by numerical values. This is a pedagogical concept, with no formal definition.

intersection-closed family, ∩-closed family. A family F of subsets of a
set X which is closed under intersection: for any subfamily G of F, we have
∩G ∈ F. As we can have G = ∅ ⊆ F, we get ∩∅ = X ∈ F. 〈2.2.2 → 27〉

item, item indicator. An item is an element in the domain of a knowledge
structure or partial knowledge structure 〈2.1.2 → 23〉. The term item is also
used in the context of skill maps 〈6.2.1 → 106〉. An item indicator random
variable for an item q is a 0-1 random variable taking value 1 if the response
to item q is correct, and 0 otherwise 〈11.9.4 → 212〉.

jointly consistentC. Two messages n and m are jointly consistent if nm is
consistent. 〈10.1.3 → 167〉
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knowledge space. A pair (Q,K) where Q is a nonempty set and K is a family
of subsets of Q closed under union and containing the empty set and the set
Q = ∪K, which is the domain of the knowledge space. Thus, a knowledge
space is a ∪-closed knowledge structure. The pair (Q,K) can also be referred
to as a space. The family K itself is often called a space. 〈2.2.2 → 27〉
knowledge state. Any set in a knowledge structure or partial knowledge
structure 〈2.1.2 → 23〉. Can be abbreviated as state.

knowledge structure. A pair (Q,K) where Q is a nonempty set and K is a
family of subsets of Q containing both the empty set ∅ and the set Q, which
is called the domain of the knowledge structure. The sets in K are referred to
as the states of the knowledge structure. The family K itself is also called a
knowledge structure. 〈2.1.2 → 23〉
L1-chain in a learning space. Let K ⊂ L be two knowledge states with
|K \ L| = p and L0 = L ⊂ L1 ⊂ . . . ⊂ Lp = K a chain of states; so,
|Li \ Li−1| = 1 for 1 ≤ i ≤ p. Such a chain is called a L1-chain. 〈2.2.1 → 26〉
language. A distinguished set of words comprising the positive and negative
literals. 〈9.2.1 → 155〉
latent. The term ‘latent state’ is non-technical and has several meanings.
It may refer informally to the hypothetical knowledge state determining the
subject’s responses to the questions in an assessment 〈13.3.1 → 246〉. The
term ‘latent structure’ is used in the psychometric literature with a germane
meaning. Finally, it may also qualify the hypothetical knowledge space or
learning space governing the responses in the application of the QUERY proce-
dure. 〈Section 15.1 → 298〉
learning function, learning rate. The function `e of Axiom [L] in a system
of stochastic learning paths, formalizing the idea that the probability of a state
at a given time only depends upon the last state recorded, the time elapsed,
the learning rate and the gradation 〈12.2.3→ 218–12.2.4→ 220〉. In a special
case, the learning rate is a gamma distributed r.v. 〈12.4.1 → 224〉
learning path. A maximal chain in a knowledge structure. 〈4.1.1 → 61〉
learning space. A knowledge structure satisfying Axioms [L1] and [L2]
〈2.2.1 → 26〉; equivalently, a ∪-closed knowledge structure which is either
well-graded, or finite and downgradable. 〈2.2.4 → 28〉
learnstep number (of a finitely learnable knowledge structure). The
smallest number l in the definition of finite learnability. 〈4.4.2 → 72〉
lengthC. The length of a message m = τ1 . . . τn is the number of its (non
necessarily distinct) tokens. We write then `(m) = n. 〈10.1.3 → 167〉.
literals, positive, negative. The symbols used to write the words of a lan-
guage. 〈9.2.1 → 155〉
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local independence. 〈11.1.2 → 189〉 The response function r of a basic
probabilistic model (Q,K, p, r) satisfies local independence if for all K ∈ K

and R ⊆ Q, we have

r(R,K) =
(∏

q∈K\R βq

)(∏
q∈K∩R(1− βq)

)(∏
q∈R\K ηq

)(∏
q∈R∪K(1− ηq)

)
in which, for each item q ∈ Q, the symbols βq and ηq denote two param-
eters measuring a careless error probability and a lucky guess probability,
respectively, for that item.

lucky guess probability. Probability of a correct response to an instance
of an item which does not belong to the student’s knowledge state (cf. for
example the Local Independence Axiom [N]). 〈12.4.1 → 224〉
m-states. 〈14.4.1 → 283〉 The states of a Markov chain. The term is used
in Chapter 14 to avoid a possible confusion with the states of a knowledge
structure.

marking function. In the Markov chain procedure of Chapter 14, the func-
tion µ of the Marking Rule Axiom [M]. 〈14.2.1 → 278〉
marked states. In the Markov chain procedure of Chapter 14 those states
retained as feasible on a given trial. 〈14.1 → 273 to 278〉
mediumC. A pair (S,T) in which S is a set of states, T is a set of transfor-
mations on S and the two axioms [Ma] and [Mb] are satisfied 〈10.1.4 → 167〉.
Any discriminative, well-graded family of sets gives rise in a natural manner
to a medium; in turn, any medium is obtainable in this way in the sense that
the sets of the family are in a one-to-one correspondence with the states of
the medium. 〈10.4.11 → 178–10.5.12 → 182〉
mesh, meshable, maximal mesh. A knowledge structure (X,K) is a
mesh of two knowledge structures (Y,F) and (Z,G) if: (i) X = Y ∪ Z; and
(ii) F and G are the projections of K on Y and Z, respectively 〈7.3.1 → 126〉.
Two knowledge structures having a mesh are said to be meshable 〈7.3.1 →
126〉. For two compatible knowledge structures (Y,F) and (Z,G), the knowl-
edge structure (Y ∪ Z,F ? G) defined by the equation

F ? G = {K ∈ 2Y ∪Z K ∩ Y ∈ F, K ∩ Z ∈ G}
is the maximal mesh of F and G 〈7.4.1 → 127〉.
messageC. A string m = τ1 . . . τn of tokens in a medium. 〈10.1.3 → 167〉
minimal well-graded extension. 〈16.3.3 → 356〉 A minimal well-graded
extension of a non well-graded family F is a well-graded ∪-closed family H

such that:

(i) F ⊂ H;
(ii) there is no ∪-closed, well-graded family H′ satisfying F ⊂ H′ ⊂ H.
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mixedC. A message m in an oriented medium is called mixed if it is concise
and of the form m = nn′, where n is a positive message and n′ a negative
one (see ‘canonical message’). 〈10.5.5 → 180〉
multiplicative updating rule. A special case of the permutable updating
rule. 〈13.4.4 → 251〉
negative tokenC. In an orientation {T+,T−} of a medium, any token in T−.
〈10.4.2 → 174 to 175〉
neighborhood, neighbor. The subfamily N(K,h) of all the states at dis-
tance at most h from a state K in a knowledge structure K is referred to as
the h-neighborhood of K, or sometimes as the ball of radius h centered at the
state K; thus, N(K,h) = {K ′ ∈ K d(K,K ′) ≤ h} 〈4.1.6 → 63〉.

The term ‘neighborhood’ is also used with a different, but related meaning
pertaining to a family rather than a state. The ε-neighborhood of a subfamily
F of a knowledge structure K is the subfamily of F defined by

N(F, ε) = {K ′ ∈ K d(K,K ′) ≤ ε, for some K in F}.
The (q, ε)-neighborhood and the (q̄, ε)-neighborhood of F are respectively
Nq(F, ε) = N(F, ε)∩Kq and Nq̄(F, ε) = N(F, ε)∩Kq̄. The ε-neighbors are the
states in a ε-neighborhood; the terms ‘(q, ε)-neighbors’ and ‘(q̄, ε)-neighbors’
have similar meanings. 〈14.3.1 → 279〉.
nomenclature. Let Q1, . . . , Qk be a collection of nonempty subsets of the
domain Q of a knowledge structure K. The collection K|Q1

, . . . , K|Qk of
projections is a nomenclature if the collection (Qi)1≤i≤n covers Q, that is, if
∪ni=1Qi = Q. 〈11.8.1 → 209〉
notion. If q is an item in a knowledge structure (Q,K), then the set q∗ of all
the items contained in exactly the same states as q is a notion. We have thus
q∗ = {s ∈ Q ∀K ∈ K, s ∈ K ⇔ q ∈ K}. 〈2.1.5 → 24〉
operative. A query (A, q) is said to be operative for a learning space L if
L \DL(A, q) ⊂ L. 〈16.1.9 → 338〉
ordinal space. A discriminative knowledge space closed under intersection
is a (partially) ordinal space (with ‘partially’ referring to the corresponding
partial order). 〈3.8.1 → 56–3.8.3 → 57〉
orientationC. An orientation of a medium (S,T) is a partition {T+,T−} of
its set of tokens T such that, for any token τ , we have τ ∈ T+ ⇔ τ̃ ∈ T−,
with τ̃ the reverse of τ . By convention, the tokens in T+ (resp. T−) are called
‘positive’ (resp. negative). 〈10.4.2 → 174〉
oriented mediumC. A medium equipped with an orientation is called an
oriented medium. 〈10.4.2 → 174〉
outer fringe. In a knowledge structure (Q,K), the outer fringe of a state K
is the set KO = {q ∈ Q \K K + {q} ∈ K}. 〈4.1.6 → 63〉
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parent family. Let K|Q′ be projection of a knowledge structure (Q,K) on a
proper subset Q′ of Q. For any J ∈ K|Q′ , the parent family J� of J is defined
by J� = {K ∈ K K ∩Q′ = J}; so, ∪J∈K|Q′J� = K. 〈11.7.2 → 207〉
partial knowledge structure. 〈2.2.6 → 29〉 A family of sets K containing
the set ∪K. Partial knowledge spaces and partial learning spaces are defined
similarly.

partially ordinal space. A discriminative quasi ordinal space 〈3.8.1 → 56〉.
In other words, a space which is derived from a partial order 〈3.8.3 → 57〉.
partially union-closed. A family F is partially union-closed (or partially
∪-closed) if for any nonempty subfamily G of F, we have ∪G ∈ F. (Contrary
to the ∪-closure condition, partial ∪-closure does not imply that the empty
set belongs to the family.) 〈2.2.6 → 29〉
path in a knowledge structure. See stepwise path or tight path.

Pending-Table. Buffer collecting all the responses APq having failed the
HS-test in the algorithm for building a learning space. 〈16.2.11 → 351〉
permutable updating rule. An updating rule satisfying the permutability
condition F

(
F (l, ξ), ξ′

)
= F

(
F (l, ξ′), ξ

)
. This condition implies that the order

of the questions asked during the assessment is irrelevant. 〈13.4.3 → 251〉
positive tokenC. In a medium equipped with an orientation {T+,T−} of a
medium, any token in the set T+. 〈10.4.2 → 174 to 175〉
precede. Let - be the surmise relation of a knowledge structure. When r - q,
we say that r precedes q, or equivalently that r is surmisable from q. If,
moreover, q - r does not hold, we say that r strictly precedes q. 〈3.7.1 → 54〉
prefix, prefixC. The initial segment of a word 〈9.2.1→ 155〉, or of a message.
〈10.5.4 → 180〉
probabilistic knowledge structure. A finite partial knowledge structure
equipped with a probability distribution on its set of states. 〈11.1.2 → 189〉
probabilistic projection. 〈11.7.3→ 208〉 Suppose that (Q,K, p) is a proba-
bilistic knowledge structure, and let K′ be a projection of (K, Q) on a proper
subset Q′ of Q. For any J ∈ K|Q′ , write J� = {K ∈ K K∩Q′ = J}. The triple
(Q′,K′, p′) is the probabilistic projection induced by Q′, if for all J ∈ K′, we
have p′(J) =

∑
K∈J� p(K).

produce, produceC. Any attribution σ on a set Q produces a knowledge
space (Q,K) via the equivalence K ∈ K ⇐⇒ ∀q ∈ K, ∃C ∈ σ(q) : C ⊆ K
〈5.2.3 → 86〉. In media theory, we say that a message m from a state S
produces some state V 6= S if Sm = V 〈10.1.3 → 167〉.
progressive. A system of stochastic learning paths is progressive if it does
not allow for any forgetting. 〈12.2.4 → 220〉
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projection. Let (Q,K) be a partial knowledge structure. For any nonempty
proper subset Q′ of Q, the family K|Q′ = {W ⊂ Q′ ∃K ∈ K,W = K ∩Q′} is

the projection of K on Q′. We thus have K|Q′ ⊆ 2Q
′
. If W = K ∩Q′ for some

K ∈ K and so W ∈ K|Q′ , then W is called the trace of K on Q′. 〈2.4.2 → 32〉
prolong. The skill map (Q′, S′, τ ′) prolongs the skill map (Q,S, τ) if Q = Q′,
S ⊆ S′, and τ(q) = τ ′(q) ∩ S for all q ∈ Q. 〈6.3.6 → 109〉.
PS-QUERY. 〈15.5.1 → 324 to 331〉 An extension of the QUERY routine in
which a response to a query (A, p) is not implemented immediately. Instead,
it is put in a buffer, awaiting for a confirmation or a contradiction from a later
response.

quadratic discrepancy index. For two knowledge structures K and K′, this
index is the quadratic mean di(K,K′) =

√
di2(K,K′) + di2(K′,K′) between

the two discrepancy indices for K and K′. 〈15.6.2 → 330 to 330〉
quasi learning space. A knowledge structure satisfying quasi learning
smoothness and quasi learning consistency. This is a variant of the concept of
learning spaces for nondiscriminative structure. 〈2.3.2 → 31〉.
quasi ordinal space. A knowledge space which is closed under intersection
〈3.8.1 → 56–3.8.3 → 57〉. Equivalently, a space derived from a quasi order
〈3.8.3 → 57〉.
quasi well-graded family, or qwg-family. A family F such that, for any
two distinct states K,L ∈ F, there exists a finite sequence of states K = K0,
K1, . . . , Kp = L satisfying e(Ki−1,Ki) = 1 for 1 ≤ i ≤ p and moreover
p = e(K,L) (where e denotes the essential distance). 〈2.3.3 → 31〉
query. 〈Section 3.2→ 44〉 〈Section 7.1→ 120–Section 7.6→ 123〉 A question
symbolized as (A, p), posed to experts in scholalrly topic, with the following
interpretation: “Will any student failing all the items in the set A also fail
item q?” If Q is the domain, we thus have A ⊆ Q and p ∈ Q. The response
data may also be gathered from assessment statistics. 〈3.2.3 → 45〉
QUERY (typeset as QUERY). A routine for constructing a knowledge space,
based on responses to queries of the type (A, q) “Does failing all the items
in the set A entails failing also item q?” 〈Chapter 15 → 297 to 323〉. These
responses can either be obtained from questioning an expert, or can be derived
from assessment statistics 〈15.4.7 → 323〉.
questioning function. The function τ of the Questioning Rule Axiom [QM]
of the Markov chain procedure. 〈14.2.1 → 278–14.2.2 → 279〉
questioning rule (general). A function Ψ : (q, Ln) 7→ Φ(q, Ln) providing a
framework for rules governing the choice of the item to be asked on trial n of
an assessment, based on the probability distribution Ln on the set of states
on that trial 〈13.3.3 → 248〉. Special cases of the function Ψ provide actual
questioning rules 〈Section 13.4 → 249〉.
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qwg-family. Abbreviation for quasi well-graded family.

reduction (discriminative). The discriminative reduction of a knowledge
structure (Q,K) is the knowledge structure (Q∗,K∗) constructed by replacing
all the items q by the corresponding notions q∗. We have K∗ = {K∗ K ∈ K}
where K∗ = {q∗ q ∈ K}. 〈2.1.5 → 24 to 25〉
regular updating rule. An abstract constraint on the updating rule gener-
alizing the convex and the multiplicative updating rules. 〈13.6.2 → 256〉
resoluble attribution, resolution order. An attribution σ on a domain Q
is called resoluble if there exists a linear order T on Q such that for any item
q in Q: (a) there is some C ∈ σ(q) satisfying C ⊆ T−1(q); (b) T−1(q) is finite.
The order T is then a resolution order. 〈5.6.2 → 97〉
resoluble knowledge space. A knowledge space is resoluble when it is pro-
duced by at least one resoluble attribution. 〈5.6.5 → 97〉
response function. For a probabilistic knowledge structure (Q,K, p), a func-
tion r : (R,K) 7→ r(R,K), with R ⊆ Q and K ∈ K, specifying the probability
of the response pattern R for a subject in state K 〈11.1.2 → 189〉. This term,
denoted by the same symbol r, is also used with a germane meaning in a
system of stochastic learning paths 〈12.2.4 → 220〉.
response rule. The name of Axiom [R] of a stochastic assessment procedure,
which states formally that the probability of a correct response to the question
asked on trial n is equal to 1 if the question belong to the latent state of the
subject, and to 0 otherwise. (In that context, the careless errors and lucky
guesses probabilities are a assumed to be 0.) 〈13.3.3 → 248〉
response pattern. The subset R of the domainQ containing all the questions
correctly solved by the subject in the course of the assessment. There are thus
2|Q| possible response patterns. 〈11.1.2 → 189〉
return messageC. A message which is both stepwise effective and ineffective
for some state is called a return message or, more briefly, a return (for that
state). 〈10.1.3 → 167〉
reverseC. 〈10.1.2 → 166–10.1.3 → 167〉 The reverse of a token τ is a token τ̃
that annuls the effect of τ . More precisely, for any two adjacent states S and
V we have Sτ = V ⇔ V τ̃ = S. The reverse of a message is defined similarly.

rootC, rootedC medium. The root of an oriented medium is a state R such
that any concise message from R producing any other state is positive. An
oriented medium having a root is said to be rooted. 〈10.4.6 → 176〉
R-store. One of the two buffers of Algorithm 16.2.11. In the second stage
of the algorithm, the responses are copied from the Pending-Table into the
R-Store prior to evaluation by the HS-test. 〈16.2.11→ 351 to 16.3→ 353〉



Glossary 393

segmentC. Suppose that n = mpm′ is a message in a medium, with m and
m′ two possibly (but not necessarily) ineffective messages, and p an effective
one. Then p is called a segment of n. 〈10.5.4 → 180〉

simple (when applied to a closure space). A closure space (Q,L) is
simple when ∅ is in L. 〈3.3.1 → 46〉

simple learning model. A quadruple (Q,K, p, r) in which (Q,K) a discrim-
inative knowledge structure, r is a response function and p : K → [0, 1] is
defined by by the equation

p(K) =
∏
q∈K gq

∏
q′∈KO(1− gq′)

in which the gq’s and gq′ ’s are parameters. Moreover, the function p is a
probability distribution on K. 〈11.4.1 → 199〉

skill, skill map. 〈6.2.1 → 106〉 A triple (Q,S, τ), where Q is a nonempty set
of items, S is a nonempty set of skills, and τ is a mapping from Q to 2S \{∅}.
When the sets Q and S are specified by the context, the function τ itself is
called the skill map. Any element of the set S is a skill.

skill multimap. A triple (Q,S;µ), where Q is a nonempty set of items, S is
a nonempty set of skills, and µ is a mapping that associates to any item q a
nonempty family µ(q) of nonempty subsets of S. 〈6.5.1 → 112〉

selective with parameter δ (marking function). In the Markov chain
procedure of Chapter 14, a special case of the marking function m of the
Marking Rule Axiom [M]. 〈14.3.4 → 282〉

space. Abbreviation for knowledge space. 〈2.2.2 → 27〉

span of a family of sets G. The family S(G) containing any set that is the
union of any subfamily of sets in G. We say then that G spans S(G). We always
have ∅ ∈ S(G) because, by convention the union of the empty family equals
the empty set. 〈3.4.1 → 47〉

span† of a family of sets G. The family S†(G) containing any set that is the
union of a nonempty subfamily of sets in G. We thus have ∅ ∈ S†(G) if and
only if ∅ ∈ G. 〈4.5.1 → 74〉

state, stateC. Shorthand for knowledge state, that is, a set in a knowledge
structure or partial knowledge structure 〈2.1.2 → 23–2.2.6 → 29〉. In media
theory, an element in the set S of a token system (S,T) 〈10.1.2 → 166〉.

stepwise effectiveC. (See also ‘effective’.) A message m = τ1 . . . τn is step-
wise effective for a state S if, for 0 ≤ i ≤ n − 1 and with Si = Sτ0 . . . τi,
we have Si 6= Si+1. (We recall that τ0 is the identity function, which is not
a token.) A message m can be stepwise effective for a state without being
effective for that state: we may have Sm = S. 〈10.1.3 → 167〉
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stepwise path. A stepwise path between two sets F and G in a family of sets
F is a sequence F = F0, F1, . . . , Fp = G of sets in F such that d(Fi−1, Fi) = 1
for 1 ≤ i ≤ p, with d denoting the symmetric difference distance between sets.
〈4.1.3 → 62〉

stochastic assessment process. This phrase is used in Chapters 13 and 14,
with different meanings distinguished by the qualifiers “continuous” and “dis-
crete”, respectively. In Chapter 13 a stochastic process satisfying Axioms [U],
[Q] and [R] 〈13.3.3 → 248–13.3.4 → 249〉. In the Markov chain procedure
of Chapter 14, a stochastic process (Rn,Qn,Kn,Mn) satisfying Axioms [K],
[QM], [RM], and [M] 〈14.2.1 → 278–14.2.2 → 279〉.

stochastic learning paths (system of). A stochastic process satisfying
the Axioms [B], [R], [I] and [L], modeling the successive mastery of items over
time. 〈12.2.3 → 218–12.2.4 → 220〉

straight process. The case of a discrete stochastic assessment process in
which the probabilities of careless errors and lucky guesses are both equal to
zero; thus βq = ηq = 0 for any item q. 〈14.2.2 → 279〉

substructure. See projection.

suffix, suffixC. The terminal segment of a word 〈9.2.1→ 155〉, or of a message
〈10.5.4 → 180〉.

superfluous. A query is superfluous if its response can be inferred from the
responses to other preceding queries. 〈15.1.3 → 302〉

support. In the Markov chain procedure of Chapter 14, the set supp(π) of
all the knowledge states K having a positive probability, that is, π(K) > 0.
This subset of states is called the support of π. 〈14.2.2 → 279〉

surmise function, system. Let σ be an attribution on a nonempty set Q of
items. The attribution σ is a surmise function if the following three conditions
are satisfied for all q, q′ ∈ Q, and C,C ′ ⊆ Q:

(i) if C ∈ σ(q), then q ∈ C;
(ii) if q′ ∈ C ∈ σ(q), then C ′ ⊆ C for some C ′ ∈ σ(q′);
(iii) if C,C ′ ∈ σ(q) and C ′ ⊆ C, then C = C ′.

The pair (Q, σ) is then called a surmise system. 〈5.1.2 → 83〉

surmise relation. The surmise relation of a knowledge structure (Q,K) is
the relation - on Q defined by the equivalence r - q ⇔ r ∈ ∩Kq. In such
a case, we sometimes say that r is surmisable from q or that r precedes q.
〈3.7.1 → 54〉

system of stochastic learning paths See stochastic learning paths.
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tense. 〈5.5.4 → 93〉 An attribution σ on a nonempty set is tense when for
any item q and any clause C for q, there is a state K (in the knowledge space
derived from σ) which contains q and includes C but no other clause for q.

tight path. A tight path between two sets F and G in a family of sets F is
a sequence F = F0, F1, . . . , Fp = G of sets in F such that d(Fi−1, Fi) = 1
for 1 ≤ i ≤ p with moreover p = d(F,G). (Here, d denotes the symmetric
difference distance between sets). 〈2.2.2 → 27 and 4.1.3 → 62〉
tokenC. In a medium (S,T), an element of T, thus a transformation on the
set of states of the medium. 〈10.1.2 → 166〉
token systemC. A pair (S,T), with S a set of states and T a collection of
functions T : S → S, satisfying the three conditions: (i) |S| ≥ 2; (ii) T 6= ∅;
and (iii) the identity τ0 is not in T. The elements of T are called ‘tokens.’
〈10.1.2 → 166〉
trace. Let (Q,K) be a partial knowledge structure and Q′ a nonempty proper
subset Q′ of Q. For any state K in K, the intersection K ∩ Q′ is called the
trace of K on Q′. 〈2.4.2 → 32〉.
trivial child. A child of a partial knowledge structure (Q,K) is trivial if it is
equal to {∅}. 〈2.4.2 → 32〉
true state. In the Markov chain procedure of Chapter 14, any state K having
a positive probability. The set of those states is the support of the knowledge
structure. 〈14.2.2 → 279〉
uniform extension. Let K′ = K|Q′ be the projection induced by a proper
subset Q′ ⊆ Q, and suppose that (Q′,K′, p′) is a probabilistic knowledge
structure. Then (Q,K, p) is a uniform extension of (Q′,K′, p′) to (Q,K) if for
all K ∈ K, we have p(K) = p′(K ∩Q′)/|(K ∩Q′)�| 〈11.7.5 → 208〉. We recall
that, for any J ∈ K|Q′ , the family J� = {K ∈ K K ∩Q′ = J} is the parent
family of J 〈11.7.2 → 207〉.
union-closed family, closed under finite union. A family F of sets which
is closed under union, that is: for any subfamily G of F, we have ∪G ∈ F.
Notice that when G = ∅ (the empty subfamily), we get ∪G = ∅ ∈ F. A family
K is closed under finite union when, for any K and L in K, the set K ∪ L is
also in K. Note that, in such a case, the empty set does not necessarily belong
to the family K. 〈2.2.2 → 27〉.
unit support. 〈14.2.2 → 279〉 In the context of a (discrete) stochastic as-
sessment process, the support of a knowledge structure when it contains only
one set.

unitary. A special case of a stochastic assessment process with a ε-half-split
questioning function and a marking function which is selective with parame-
ter δ. The knowledge structure is assumed to be well-graded and the param-
eters ε and δ satisfy particular conditions. 〈14.5.3 → 285〉
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updating rule. A function u : (K, rn, qn, Ln) 7→ uK(rn, qn, Ln) modifying
the probability of state K on trial n on the basis of the subject’s response rn
to the question qn on that trial and on the current distribution Ln on the set
of states on that trial 〈13.3.3→ 248〉. The function u computes the probability
Ln+1 of the states on trial n + 1. Several special cases of the function u are
considered 〈13.4.2 → 250–13.4.4 → 251〉.
vacuousC. A message m = τ1 · · · τn in a medium is vacuous if its set of
indices {1, . . . , n} can be partitioned into unordered pairs {i, j}, such τi and
τj are mutual reverses. 〈10.1.3 → 167〉
well-gradedness,∞-wellgradedness. 〈2.2.2→ 27 and 4.3.3→ 70〉 A family
of sets F is well-graded if, for any two sets K and L in F, there is a tight path
in F from K to L. For knowledge structures, the wellgradedness condition
implies the finiteness of the family. A generalized version of this concept,
called ∞-wellgradedness, applies to the infinite case 〈4.3.3 → 70〉.
word. A string belonging to a language 〈9.2.1 → 155〉. See also describes.

yielding. A subset Q′ ⊂ Q of a partial knowledge space (Q,K) is yielding if
for any state L of K that is minimal for inclusion in some equivalence class
[K] of the partition induced by Q′, we have |L \ ∩[K]| ≤ 1. 〈2.4.11 → 37〉
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D.B. Shmoys and É. Tardos. Computational Compexity. In R.L. Graham,
M. Grötschel, and L. Lovász, editors, Handbook of Combinatorics, vol-
ume 2. The M.I.T. Press, Cambridge, MA, 1995.

E.H. Shortliffe. Computer-Based Medical Consultation: Mycin. American
Elsevier, New York, 1976.

E.H. Shortliffe and D.G. Buchanan. A model of inexact reasoning in medicine.
Mathematical Bioscience, 23:351–379, 1975.

A.N. Shyryayev. Probability. Springer-Verlag, New York, 1960.
G. Sierksma. Convexity on unions of sets. Compositio Mathematica, 42:

391–400, 1981.
J. Stern and K. Lakshminarayan. Comments on mathematical and logical

aspects of a model of acquisition behavior. Technical Report 95-05, 1995.
P. Suppes. Introduction to Logic. Van Nostrand, Princeton, N.J., 1957.
P. Suppes. Axiomatic Set Theory. Van Nostrand, Princeton, N.J., 1960.
P. Suppes, D.H. Krantz, R.D. Luce, and A. Tversky. Foundations of Mea-

surement, Volume 2: Geometrical, Threshold, and Probabilistic Represen-
tations. Academic Press, New York and San Diego, 1989.

E. Szpilrajn. Sur l’extension de l’ordre partiel. Fundamenta Mathematicae,
16:386–389, 1930.

M. Taagepera and S. Noori. Mapping Students’ Thinking Patterns in Learning
Organic Chemistry by the Use of the Knowledge Space Theory. Journal of
Chemical Education, 77:1224, 2000.

M. Taagepera, F. Potter, G.E. Miller, and K. Lakshminarayan. Mapping
Students’ Thinking Patterns by the Use of Knowledge Space Theory,. In-
ternational Journal of Science Education, 19:283, 1997.

M. Taagepera, R. Arasasingham, F. Potter, A. Soroudi, and G. Lam. Following
the Development of the Bonding Concept Using Knowledge Space Theory.
Journal of Chemical Education, 79:1756, 2002.

M. Taagepera, R.D. Arasasingham, S. King, F. Potter, I. Martorell, D. Ford,
J. Wu, and A. M. Kearney. How Students Think About Stereochemistry.
Technical report, 2008. Submitted and under revision.

G.M. Tallis. The maximum likelihood estimation of correlation for contin-
gency tables. Biometrics, 9:342–353, 1962.

R.F. Tate. Correlation between a discrete and a continuous variable. Point-
Biserial Correlation. The Annals of Mathematical Statistics, 25(3):603–607,
1954.

W.T. Trotter. Combinatorics and Partially Ordered Sets: Dimension Theory.
The Johns Hopkins University Press, Baltimore and London, 1992.

M. Van de Vel. The theory of convex structures. North-Holland Publishing
Co., Amsterdam, 1993.

K. Van Lehn. Student modeling. In M.C. Polson and J.J. Richardson, editors,
Foundations of Intelligent Tutoring Systems. Erlbaum, Hillsdale, N.J., 1988.

M. Villano. Computerized knowledge assessment: Building the knowledge
structure and calibrating the assessment routine. PhD thesis, New York



408 Bibliography

University, New York, 1991. In Dissertation Abstracts International, vol.
552, p. 12B.

M. Villano, J.-Cl. Falmagne, L. Johannesen, and J.-P. Doignon. Stochastic
procedures for assessing an individual’s state of knowledge. In Proceedings
of the International Conference on Computer-assisted Learning in Post-
Secondary Education, Calgary 1987, pages 369–371, Calgary, 1987. Univer-
sity of Calgary Press.

S.B. Vincent. The function of the vibrissae in the behavior of the white rat.
Behavioral Monographs, 1(5), 1912.

H. Wainer and S. Messick. Principles of Modern Psychological Development:
A Festschrift for Frederic Lord. Lawrence Erlbaum Associates, Hillsdale,
N.J., 1983.

H. Wainer, N.J. Dorans, D. Eignor, R. Flaugher, B.F. Green, R.J. Mislevy,
L. Steinberg, and D. Thissen. Computerized Adaptive Testing: A Primer.
Lawrence Erlbaum Associates, New Jersey and London, 2000.

D.J. Weiss. New Horizons in Testing: Latent Trait Theory and Computerized
Testing Theory. Academic Press, New York, 1983.

D.J.A. Welsh. Matroids: Fundamental concepts. In R.L. Graham,
M. Grötschel, and L. Lovász, editors, Handbook of Combinatorics, vol-
ume 1. The M.I.T. Press, Cambridge, MA, 1995.

M. Wild. A theory of finite closure spaces based on implications. Advances
in Mathematics, 108:118–139, 1994.

G. M. Ziegler. Lectures on polytopes, volume 152 of Graduate Texts in Math-
ematics. Springer-Verlag, New York, 1995. ISBN 0-387-94365-X.



Index

∩-finitary, 60
∪-closed, 27
∪-closed family, 182
∞-gradation, see gradation
∞-well-graded, see well-graded
ε-half-split, 280

Aboulafia, A., 11
accessible, 27
Acton (Lord), VI
acyclic

attribution, 98
relation, 97, 98

Aczél, J., 226, 250
adjacent, 166
Adke, S.R, 228
Aho, A.V., 355
Albert, D., IX, 11, 18, 103, 116
ALEKS, 10, 65, 119

wellgradedness, 65
Algina, J., 360
algorithm

for constructing the base, 49
for spanning the base, 51, 50–52

aligned space, 59
alphabet, 155
Anastasi, A., 360
AND/OR graph, 81, 88, 87–90
antecedent set, 298
anti-isomorphism, 134
antimatroid, 12, 26, 27, 77

finite, 27

apex, 182
Arasasingham, R.D., 235
Armstrong, W.W., 130
Arnold, K.C., 312
ascendent family, 259
assessment

language, 155
module, 10

assigned (skill), 106
association (relations), 147
asymptotic distribution, 283
atom, 48

at, 48
attribution

acyclic, 98
function, 83
relation, 98
tense, 93

axioms
for a learning space, 4, 26
Markovian process, 248

Babbage, C., VII
background, see clause
Baker, H., IX
ball, 63
Barbut, M., 140, 149
Barr, A., 99
base of a ∪-closed family, 43, 47, 47–54

open problem, 375
base†, 261
basic local independence model, 189



410 Index

with no guessing, 198
basic probabilistic model, 189
Bayes Theorem, 251
Bernstein, I., 19
Bharucha-Reid, A.T., 283
binary classification language, 156
Binet, A., VII
biorder, 66, 66–69
Birkhoff’s Theorem, 44, 57, 120
Birkhoff, G., 6, 44, 48, 56, 58, 136, 140,

149
Björn, A., 26
block, 299, 306
bound

greatest lower, 139
least upper, 139

bounded path, 70
Bowman, V.J., 164
Bradshaw, H., VI
Breen, D., 11
Brent, R.P., 194
Browning, O., VI
Brunk, H.D., 194
Buchanan, D.G., 11, 18
Buekenhout, F., 58, 59
Bush, R.R., 271

canonical, see message
cardinal number, 13
cardinality, 13
careless error, 188, 242–244
careless error probability, see error

probability
Caspard, N., 342
cast (a relation), 84
Cavagnaro, D., 39
centered at, 63
chain

in a partially ordered set, 16
Chedzoy, O.B., 317, 369
chi-square, 192
child, 32

also Q′-child, 32
trivial, 32

child of, 259
Chubb, C., IX
Chung, K.L., 283
class, see partition

in a Markov chain, 283

classification, 209
clause (for an item), 6, 83
closed, 135

see medium, 179
closed set, 283
closedness condition, see medium
closure

of a set, 47
operator, 135
space, 43, 46, 45–47
spatial, 146
surmise, 146

Cogis, O., 77
Cohn, P.M., 60
collection, 46
compatible (with), 127
competency, 112

model, 112
concise, see message
conjunctive model, 110
Conlan, O., 11
consistent, see message
convex geometry, 77
convexity space, 59
correlation index

Pearson, 367
phi, 363, 367
point biserial, 363, 367
tetrachoric, 363, 367

Cosyn, E., IX, 7, 17, 18, 28, 39, 120, 125,
213, 236, 323–332, 356, 359–374

countable, 16
covering, see relation
Cramér, H., 194
Cristante, F., IX, 18
critical, 336
Crocker, L., 360

Düntsch, I., 116
Davey, B.A., 48, 99
decision tree, 242
Degreef, E., 161, 242
delineate, 112, 106–117

via, 110
Deng, W., X
derived, 147

entailment, 123
from a relation, 144
quasi order, 58



Index 411

surmised function, 85
describe, 157
descriptive language, 157
Desmarais, M., 11
discrepancy distribution from, 320
discrepancy index

quadratic, 330
discrepancy index from, 320
discriminative, 24

reduction, 25
surmise system, 83

disjunctive model, 106
Disraeli, B., VI
distance, 16

canonical, 16
definite positive, 16
symmetric difference, 16
triangle inequality, 16

Doble, C.W., IX, 17, 27, 184, 359–374
domain, 2, 23
Dorans, N.J., 19, 103
Dowling’s algorithms, 49, 50
Dowling, C.E., 11, 18, 49, 50, 58, 130,

149, 236, 297, 332
downgradable, 27
Drösler, J., X
Drasgow, F., 316
dual (of a knowledge structure), 27, 45
Ducamp, A., 67, 77, 161
Duda, R.O., 11, 18
Dugunji, J., 16
Dukhovny, A., 183
Duntsch, I., 18
Duquenne, V., 130
Durnin, J., 19
Düntsch, I., 130

E.T.S., VII, 370
Edelman, P.H., 26, 77, 99, 342
Educational Testing Services, 370
effective, see message
Eignor, D., 19, 103
empty message, see message
entail relation, 124
entailment, 7, 44

for, 122
entropy (of a probability distribution),

253

Eppstein, D., 8, 32, 74–77, 163, 183,
336, 355–356

equally informative, 24
ergodic

m-state, 283
set, 283

error probability, 189
essential distance, 30
essentially finite, countable, see

knowledge structure

fair (process), 279
false positive, 326
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Tate, R.F., 367
teaching module, 10
teaching-to-the-test, VII
tense, 93, 94
terminal, see segment
tetrachoric coefficient, 363, 367
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